
PHYSICAL REVIEW E, VOLUME 64, 016133
Lyapunov exponents and transport in the Zhang model of self-organized criticality
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We discuss the role played by Lyapunov exponents in the dynamics of Zhang’s model of self-organized
criticality. We show that a large part of the spectrum~the slowest modes! is associated with energy transport
in the lattice. In particular, we give bounds on the first negative Lyapunov exponent in terms of the energy flux
dissipated at the boundaries per unit of time. We then establish an explicit formula for the transport modes that
appear as diffusion modes in a landscape where the metric is given by the density of active sites. We use a
finite size scaling ansatz for the Lyapunov spectrum, and relate the scaling exponent to the scaling of quantities
such as avalanche size, duration, density of active sites, etc.
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I. INTRODUCTION

Within the past ten years the notion of self-organiz
criticality ~SOC! has become a new paradigm for the exp
nation of a huge variety of phenomena in nature and so
sciences. Its origin lies in the attempt to explain the wid
spread appearance of power-law-like statistics for charac
istic events in a multitude of examples, such as the distri
tion of the size of earthquakes, 1/f noise, amplitudes of sola
flares, and species extinction, to name only a few ca
@1–3#. In this paradigm, the dynamics occur as chain re
tions or avalanches. Furthermore, a stationary regime
reached, where the average incoming flux of external per
bations is balanced by the average outgoing flux that
leave the system at the boundary or by dissipation in
bulk, and there is a constant flux through the system. In
stationary state, referred to as theSOC state, the distribution
of avalanches follows a power law—that is, there is a sc
invariance reminiscent of thermodynamic systems at
critical point. A local perturbation can induce effects at a
scale, and there are long-range spatial and time correlat
In other words, in this paradigm the systemspontaneously
reaches a critical state without any fine tuning of some c
trol parameter.

Several models have been proposed to mimic this me
nism, including the sandpile model@1#, the abelian sandpile
@4# or the continuous energy model@5#. The results available
are mainly numerical, and only a few rigorous results
known. Numerical simulations report the following behavio
Fix an observable, sayx, measuring some property of a
avalanche~duration, size, etc.!, and compute the relate
probability PL(x) at stationarity for a system of characteri
tic sizeL. The graph ofPL(x) exhibits a power law behavio
over a finite range, with a cutoff corresponding to finite s
effects. AsL increases the power law range increases, le
ing to the conjecture that a critical state is indeed achieve
the thermodynamic limit, namely, thatPL(x) behaves like
1/xtx as L→`. tx is called thecritical exponentfor the
observablex. There is apparently no control parameter
tune in order to attain the critical state. Despite the la
1063-651X/2001/64~1!/016133~16!/$20.00 64 0161
-
al
-
r-
-

es
-
is
r-
n
e
is

le
e

s.

-

a-

e
.

d-
in

e

number of papers written on the subject, some basic pr
lems are still open.

Guided by the wisdom coming from renormalizatio
group analysis and phase transitions in equilibrium syste
it seems natural to look for a possible classification of
models into universality classes characterized by a se
critical exponents, for a family of ‘‘relevant’’ avalanche ob
servables. However, the link between the ‘‘criticality’’ of th
‘‘out of equilibrium’’ SOC models and the usual statistic
mechanics of phase transitions in equilibrium systems
mains to be clarified@6#. Furthermore, apart from the fac
that the commonly studied observables~size, duration, area
and gyration radius! do not necessarily consitute acomplete
set allowing one to classify the models, even a computa
of the critical exponentstx from numerical data is not easy
and there is not yet any agreement on the way to do this.
clear that the simple measurement of the slope ofPL(x) in
the linear range of a log-log plot is not reliable, due to t
finite sample fluctuations, and because the explicit form
the cutoff is not known in general. The computation oftx
from the behavior of the moments is certainly a better way
proceed. However there is no agreement yet about whe
one should use a finite size scaling treatment@7# or more
sophisticated methods~such as multifractal analysis@8#!.
Therefore, at the moment, the identification of a~supposed!
universality class seems problematic. Finally, the cen
question is the following: what exactly does a knowledge
the critical exponentstx teach us about the model?

An alternative approach to better understand the beha
of SOC models can consist of studying the microscopic
namics and inferring information about the macroscopic
havior from this analysis. A detailed analysis can, at fi
sight, seem useless since the conventional wisdom from c
sical statistical mechanics is that microscopic ‘‘details’’ a
irrelevant, and only structural properties like conservat
laws and symmetries are essential. However, as mentio
above, the theory of SOC has not yet reached the leve
understanding of classical critical phenomena. It suffers
particular, from the lack of a thermodynamic formalism, a
notions like Gibbs measures and free energy cana priori not
©2001 The American Physical Society33-1
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be used. On the other hand, by having a precise descrip
of the dynamics of the finite size system, one can expe
better understanding of the thermodynamic limit, and c
decide which components in the models definition are re
‘‘relevant’’ and what information the usually compute
quantities~like critical exponents! actually give us.

This is the essence of the program we developed in R
@9–11#. We found that Zhang’s model of SOC@5# can be
fruitfully studied with the tools of hyperbolic dynamical sy
tem theory. Then we were able to extract unexpected res
establishing, in particular, a formula relating the critical e
ponent of avalanche size to the spectrum of the Lyapu
exponents. In this paper we develop this point of view, a
make a further step toward understanding the dynam
properties of this model and their link to the SOC state. W
first define the model as a hyperbolic dynamical system
skew-product type. We then define two different time sca
in this setting: thelocal time, which is the natural time for
the dynamical system, and theavalanche time, related to the
avalanche duration. We introduce a natural invariant m
sure to characterize the statistical properties at stationa
and we relate the avalanche observable statistics to the
godic local time average. We then discuss the role played
Lyapunov exponents in the dynamics, and their relation
the energy transport and the average avalanche observa
We show that random excitation induces a posit
Lyapunov exponent, while the relaxation dynamics cor
sponds to negative exponents. Furthermore, we show th
wide part of the spectrum~slowest modes! is associated with
energy transport in the lattice. In particular, we give boun
on the first negative Lyapunov exponents in terms of
energy flux dissipated at the boundaries per unit of time.
establish an explicit formula for the transport modes, th
appear as diffusion modes in a landscape where the met
given by the density of active sites. Except for the fi
modes, they differ dramatically from the normal diffusio
modes that one would obtain by assuming a uniform den
of active sites. It was argued in Ref.@12# that SOC requires a
wide separation between the excitation and relaxation t
scales~slow driving!. We show in this paper, as a cons
quence of our more general analysis, that the dynamic
Zhang provide this separation naturally, and that aninfinitely
slow driving limit is actually reached as the size of the sy
tem goes to infinity. We then show, using a finite size scal
ansatz for the Lyapunov spectrum, that one can relate
obtained scaling exponent to the scaling of quantities suc
avalanche size, duration, density of active sites, etc.

II. DYNAMICAL SYSTEM DEFINITION AND BASIC
PROPERTIES

A. Definition

Zhang’s model@5#, widely inspired from the Bak-Tang
Wiesenfield precursor model@1#, was introduced as a pos
sible example of a model which ‘‘self-organizes’’ into
critical state in the thermodynamic limit, namely without fin
tuning of a control parameter. Its beauty lies in its simplici

Let L be a d-dimensional sublattice inZd, taken as a
square of edge lengthL for simplicity. Call N5uNu5Ld,
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whereuNu denote the cardinality of a set, and let]L be the
boundary ofL, namely, the set of points inZd\L at distance
1 from L. Each sitei PL is characterized by its ‘‘energy’’
Xi , which is a non-negative real number. CallX5$Xi% i PL

a

configuration of energies. LetEc be a real, strictly positive
number, called thecritical energy, andM5@0,Ec@

N. A con-
figuration X is called ‘‘stable’’ iff XPM and ‘‘unstable’’
otherwise. IfX is stable then one chooses a sitei at random
with some probabilitynL( i ), and adds to it an energyd,
whered is set to 1 in this paper~excitation!. If a site i is
overcritical or active(Xi>Ec), it loses a part of its energy in
equal parts to its 2d neighbors~relaxation!. That is, we fix a
parametereP@0,1@ such that, after relaxation of the sitei,
the remaining energy ofi is eXi , while the 2d neighbors
receive the energy@(12e)Xi #/2d. Note, therefore, that there
is a local conservation of energy. If several nodes are simul
taneously active, the local distribution rules are additive
superposed, i.e., the time evolution of the system is sync
nous. The succession of updatings leading an unstable
figuration to a stable one is called anavalanche~a more
precise definition of an avalanche will be given below!.
There is dissipation at the boundaries: the sites of]L have
always zero energy. As a result, all avalanches arefinite. The
addition of energy isadiabatic. When an avalanche occur
one waits until it stops before adding a new energy quant
Further excitations eventually generate a new avalanche,
because of the adiabatic rule, each new avalanche starts
only oneactive site. Note that relaxation depends onlocal
conditions while excitation is conditioned byglobal con-
straints~all sites are quiescent!. It is conjectured that a criti-
cal state is reached, independently ofEc , at least for largeEc
values.1

B. Zhang’s model as a dynamical system

Because all avalanches arefinite ~for finite L), and since
we are not interested in the transients, one can, without
of generality take all initial energy configurationsXPM.
All trajectories starting fromM belong to a compact setB.
Call M̄5B\M. M̄ contains a set of all unstable energ
configurations achievable in an avalanche, starting from
energy configuration inM.

Fix e.0, and calla5(12e)/2d. Let h be the Heaviside
function. DefineH: RN→$0,1%N such thatH(X) is the vec-
tor $h(Xi)% i 51 . . .N . Call Xc the vector$Ec% i 51 . . .N . Finally,
let D be the discrete Laplacian. The dynamics is defined
the mappingF:B→B such that

F~X!5X1aD@H~X2Xc!•X#, ~1!

which redistributes the energy of the active sites in eq
parts to the neighbors after one relaxation step. Note thatF is
the identity if no site is active, i.e. ifXPM, and that it is
piecewise linear~i.e., linear on subdomainsBkPB). F is a
~singular! diffusion operator anda a diffusion coefficient.

1Strong deviations from a power law have been observed
small Ec in one dimension@9#.
3-2
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It is useful to encode the dynamics of excitation in t
following way. LetSL

1 be the set of right infinite sequence
a5$a1 , . . . ,ak , . . . %,akPL, and s be the left shift over
SL

1 , namely,sa5a2a3 . . . . Theelements ofSL
1 are called

excitation sequences. The setV5SL
13B is thephase space

of the Zhang’s model, andX̂5(a,X) is a point in V.
Zhang’s model dynamics are given by a map of ske
product typeF̂:V→V, such that

XPM⇒F̂~X̂!5~s•a,X1ea!, ~2!

XPM̄⇒F̂~X̂!5„a,F~X!…. ~3!

A knowledge of an initial energy configurationX and of a
~infinite! sequence of excited sitesa ~of an initial condition
X̂) fully determines the evolution. One can giveSL

1 a prob-
ability distribution nL corresponding to a random choice
excited sites. In Zhang’s original model, the excited si
were chosen at random and independently with unifo
probability. This corresponds to givingSL

1 a uniform Ber-
noulli measure. Throughout this paper we will often think o
the left Bernoulli shift onSL

1 as represented by the syste
z→Nz mod 1,zP@0,1#.

In the following we will denote the two projections on th
first and second coordinates bypu(X̂)5a and ps(X̂)5X.
The superscriptsu and s meanunstableand stable, respec-
tively, and correspond to the expansion~contraction! proper-
ties of the dynamics. LetDF̂X̂ be the tangent map ofF̂ at X̂
and DF̂X̂

t the tth iterate. As shown below,pu(DF̂X̂) is ex-

pansive whereasps(DF̂X̂) induces contraction. In the fol
lowing we will use the notation X̂(t)5F̂t(X̂) @X(t)
5ps

„F̂t(X̂)…#. Furthermore, note thatps(DF̂X̂)5DFX , and
that DFX5I , the identity matrix overRN, if XPM.

Consider a pointX̂PV. Its trajectory is intermittent, com
posed of bursts of excitation of the sitesa1 ,a2 , . . .an , for
those timest such thatX(t)PM, followed by relaxation
periods whenX(t)PM̄. Define the following hierarchy of
waiting times:

g0~X̂!50, ~4!

s i~X̂!5 inf
t.g i 21

$X~ t !PM̄%, i>1 ~5!

g i~X̂!5 inf
t.s i

$X~ t !PM%, i>1 ~6!

For i>1, s i(X̂) @g i(X̂)# is the starting time~ending time!
of the i th avalanche occurring during the evolution ofX̂.
Therefore, theavalanche durationof the i th avalanche is

t i~X̂!5g i~X̂!2s i~X̂!. ~7!

In the same way, one defines

v i~X̂!5s i~X̂!2g i 21~X̂!, ~8!
01613
-
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which is the number of excitations between the end of
avalanchei 21 and the beginning of the next avalanche.
this way, one naturally introduces two time scales: alocal
time tcorresponding to one step of iteration in the dynami
and anavalanche timet i corresponding to the duration of a
avalanche~a similar description was used in Ref.@13#!.

The waiting times are useful for defining the usual av
lanche observables. The numberuNu of relaxing sites for a
given configuration is

r ~X̂!5uNu$ i PL, Xi>Ec%. ~9!

The avalanche sizeis

s~X̂!5 (
t51

t(X̂)

r „F̂t~X̂!…, ~10!

where

t~X̂!5 inf
t>1

$Ft~X!PM%21 ~11!

is the duration of the avalanche that occurs when exciting
site a1 in a stable energy configurationX. It is zero if one
drops energy without relaxation.

The structure of an avalanche can be encoded by the
quence of active sitesA(X̂)5$At(X̂)%1<t<t(X̂) where
At(X̂)5$ j PLuXj (t)>Ec%. @Note that A1(X̂) is nonempty
and equal to$a1% iff X1ea1

is active.# Correspondingly,

there exists a partition2 of SL
13M into domainsPi ,k5@ i #

3Mi ,k , where@i# is the set of sequences inSL
1 having a first

digit i, such that for any energy configurationXPMi ,k the
excitation of sitei leads to the same avalanche~the same
sites relax at the same time!. Under some moderate assum
tions ~see Ref.@11#!, this allows us to define a symboli
coding for the avalanche and a transition graph, giving
transition rules between successives avalanches, and to
that the dynamical system admits a unique, fractal, invar
set. The boundary of the domainsPi ,k constitutes thesingu-

larity set of F̂, calledS. This is the set of points whereF̂ is
not continuous.

C. Stationary state and probability of avalanche observables

Let m̂L be an invariant measure for the dynamical syst

$V,F̂%, where L refers to the lattice size, namely
m̂L„F̂

21(A)…5m̂L(A), where APV is a measurable set
SinceV has a product structure where the unstable foliat
is always transverse to the stable one, and since the dyn
cal system is a skew product,m̂L5nL3mL , wherenL is the
induced measure on the unstable direction orexcitationmea-
sure, andmL is the induced measure onB or measure on the
energyconfigurations. For simplicity we will assume thatnL

2This partition is induced by the partition ofB into domains of
continuity for F @11#.
3-3
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is a Bernoulli measure, namely, that the successive exc
sites are chosenindependentlywith fixed rates. Once
we have fixed the distribution of excitation, we are interes
in the possiblemL measures. Of special physical impor
ance are the measures obtained by iterating the Lebe
measure mLeb ~see footnote 3! on M, that is,
limn→`(1/n)( i 50

n21F̂i(nL3mLeb). When the excitation mea
surenL is itself the Lebesgue measure on@0,1# ~correspond-
ing to choosing the excited sites with uniform probabilit!
the measure obtained is called the Sinai-Ruelle-Bow
~SRB! measure. More generally, we will call the~condi-
tional! SRB measure limn→`(1/n)( i 50

n21F̂i(nL3mLeb), for a
fixed nL . This is a natural invariant measure from the phy
cal point of view, since it gives the ensemble average w
respect to typical initial energy configurations.

It is common in SOC literature to assume ergodicity.
our setting, the physically relevant ergodic property
equivalent to assuming that the SRB measure is uniq
Proving the ergodicity in Zhang’s model is clearly a difficu
task, which is beyond the scope of this paper. However,
note that this point was discussed in a previous paper@11#,
where strong mathematical arguments in favor of this w
given. Actually, ergodicity was proved, but restricted to t
one-dimensional model and to someEc interval. A general
proof is under construction, and will be published elsewh
@14#. On physical grounds, note that the failure of ergodic
would lead to a stationary state depending on initial con
tions. This would contradict the implicit SOC assumpti
that the stationary state is unique. In the following, we w
therefore assume that ergodicity holds and thatm̂L is the
unique SRB measure. This implies, in particular, an almo
sure equality between the ensemble average and the
average: iff is some observable~a function V→R, inte-
grable with respect tom̂L),

f̄L5
def

lim
T→`

1

T (
t51

T

f~ F̂t~X̂!!5E
V

f~X̂!dm̂L~X̂!5
def

EL@f#

~12!

for a typical ~namely Lebesgue almost surely! initial condi-
tion X̂. Here and in the following,2L will denote the time
average, whileEL@ # will be an ensemble average on a la
tice of sizeL.

From a dynamical system point of view,m̂L is the natural
object to deal with. However, in the SOC literature one
more interested in the probability distribution of some av
lanche observable and its scaling properties in the thermo
namic limit. Fix an avalanche observable, says. Call Ps the
union of domainsPi ,k such that avalanches corresponding
each domainPi ,k have the same sizes. Then the probability
of having an avalanche of sizes, by excitation of astable

configuration, is Prob@s(X̂)5suX̂PP#5@m̂L(Ps)/m̂L(P)#

3Or any absolutely continuous measure, which corresponds to
lecting the initial energy configuration with a probability distrib
tion having a density.
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5@m̂L(Ps)/mL(M)#. In this definition we include the ava
lanches of size zero~excitation without relaxation!. How-
ever, it is more natural from the SOC point of view to e
clude this case. We therefore definePL(s) as the probability
of having an avalanche of sizes strictly larger than 0.4

PL@s#5
defm̂L~Ps!

pL
, s>1, ~13!

wherepL5
def

Prob@s(X̂)>1,XPM# is the probability ofiniti-
ating an avalanche. The average with respect toPL@s#, de-
noted further on bŷ &L , is

^c~s!&L5
def

(
s51

jL
s

PL@s#c~s!, ~14!

wherec is some real function, andjL
s is the maximal value

that the observables can have on a lattice of sizeL ~note that
jL

s also depends onEc , e, andd, but is boundedif L,`).
The same definition holds for any other avalanche obse
able. From the ergodic theorem

^c~s!&L5 lim
n→`

1

n (
i 51

n

c~si !, ~15!

where si is the size of thei th avalanche occuring in the
trajectory of a generic pointX̂.

One has

pL5m̂L[ ø i 51
N $a15 i ,XiP@Ec21,Ec@%#5(

i 51

N

pL~ i !,

~16!

where

pL~ i !5
def

nL~ i !mL$XiP@Ec21,Ec@% ~17!

is the probability thatan avalanche starts at a site i. Note
that the probabilitiespL( i ) depend a priorion i even if the
excitation measure is uniform. In this case, however,
~16! reduces to

pL5
1

N (
i 51

N

mL$XiP@Ec21,Ec@%. ~18!

Fix X̂ andT, call n(T,X̂) the number ofcompleteavalanches
occurring until local timeT for the initial conditionX̂. Ob-
viously, n(T,X̂)→` as T→`, ;X. Then, from the ergo-
dic theorem,

e-

4In view of the expected critical behavior asL→`, one usually
writes a scaling formPL(s)5 f L(s)/sts wheref L(s) is a cutoff term
accounting for finite size effects on large scales.PL(s) is not de-
fined for s50 unless we assume very special properties forf L(s).
3-4
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pL5 lim
T→`

n~T,X̂!

T
. ~19!

One can decomposeT as T5( i 51
n(T,X̂)t i1( i 51

n(T,X̂)v i1K(X̂),

where K(X̂) is some residual time, finite, whateverT and
X̂ @K(X̂) is bounded by the largest avalanche duratio#.
Note thatt i(v i) stands fort i(X̂) @v i(X̂)#, but we removed
theX̂ dependence in order to simplify the notations. Then
T goes to infinity,

n~T,X̂!

T
;

n~T,X̂!

(
i 51

n(T,X̂)

t i1 (
i 51

n(T,X̂)

v i

5
n~T,X̂!

(
i 51

n(T,X̂)

t i

2
n~T,X̂!

(
i 51

n(T,X̂)

v i

(
i 51

n(T,X̂)

v i

T
.

Call

v̄L5
def

lim
T→`

1

T (
i 51

n(T,X̂)

v i5mL~M! ~20!

the probability of dropping energy in the system at a giv

time ~the equality holds formL for almost everyX̂ from the
ergodic theorem!. v̄L( i )5Prob@a15 i ,XPM#5nL( i )v̄L is
the probability of dropping energy on sitei, at a given time,
and is called thedriving rate in the literature@15#. One has

pL5
12v̄L

^t&L
5

mL~M̄!

^t&L
, ~21!

where^t&L is theaverage avalanche duration.
There exists an important relation linking the avalanc

averages~average with respect toPL) to the local time av-
erage~average with respect tom̂L). Let f:V→R be some
observablesuch thatf(X̂)50 wheneverXPM. A related
avalanche observable can be defined by summing the va
that f takes in one avalanche. That is, callf i(X̂)

5(
t5s i (X̂)

g i (X̂)
f„X̂(t)…. @An important example is whenf(X̂)

5r (X̂), the number of active sites in one step. Thenf i(X̂) is
the size of thei th avalanche in the trajectory ofX̂.# One
obtains

f̄L5 lim
T→`

1

T (
i 51

n(T,X̂)

(
t5s i (X̂)

g i (X̂)

f„X̂~ t !…,

which yields

f̄L5pL^ f &L . ~22!
01613
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In particular,

r̄ L5pL^s&L ~23!

Finally we define the probability that a sitei is active~often
called thedensity of active sitesin the literature5!:

rL~ i !5
def

mL@Xi>Ec# ~24!

and

rL
av5

1

N (
i 51

N

rL~ i !. ~25!

rL
av is believed to act as an order parameter in Zhan

model.

III. DYNAMICAL PROPERTIES AND LYAPUNOV
EXPONENTS

A. Jacobian matrix and Lyapunov exponents

Due to the piecewise affine structure of the mapF, the
Jacobian matrixDFX plays a central role in Zhang’s mode
since it characterizes the energy transport. Indeed, the e
DFX,i j

t is the ratio of energy flowing from sitej to site i in t
times steps for the initial conditionX. Define Zk„X(t)…
5H„Xk(t)2Ec…. This is a random variable, taking a value
if Xk(t) is stable, and a value 1 otherwise, whose probabi
distribution is induced~at stationarity! by the invariant mea-
sure m̂L . More precisely, Prob@Zk„X(t)…51#5rL(k). Let
Z(X)5$Zk(X)%k51

N , and callS(X)5DZ(X)I @equivalently
S(X) is the matrix of entriesSi j (X)5D i j Zj (X)#. S is the
‘‘toppling’’ operator of Zhang’s model. The Jacobian matr
is DFX5I 1aS(X), while DFX

t is given by

DFX
t 5I 1a (

t051

t

S„X~ t0!…1a2 (
t>t1.t0>1

S„X~ t1!…S„X~ t0!…

1•••1a r (
t>tr 21.tr 22 . . . .t0>1

S„X~ t r 21!…

3S„X~ t r 22!…•••S„X~ t0!…1•••1a tS„X~ t !…

3S„X~ t21!…•••S„X~1!…. ~26!

Therefore, the generic term~say of orderr ) is a ‘‘propaga-
tor’’ transmitting the energy inr times steps. Note that thi
formula is exact. It calls for the following remarks.

~i! The mapsS(X) do not commute, and they depend o
the state. This is a key difference from Dhar’s model, sinc
induces anon-Abelianstructure and a ‘‘toppling’’ operator
dependingnot only on the site, but also on the whole ener
configuration. In particular, the propagatoris not a mere
polynomial of the Laplacian.

5We will keep this terminology throughout this paper, thou
rL( i ) is not, strictly speaking, a density since( i 51

N rL( i )5” 1.
3-5
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~ii ! The evolution dependsa priori on the whole trajec-
tory, and therefore the strong memory effects expected
critical phenomenon can be treated from Eq.~26!.

If one defines the excitation times for a given trajecto
by

nk~X̂!5 inf
t.nk21(X̂)

$X~ t !PM%, ~27!

with n05g051, the energy configuration at timeT, for an
initial condition X̂ is

X~T!5DFX
T
•X1 (

i 51

m(T,X̂)

DFX
t2n i (X̂)

•ean i (X̂)
, ~28!

wherem(T,X̂) is the number of excitations on a time inte
val of length T for the initial condition X̂. The first term
corresponds to a redistribution of the initial energy config
ration, and the second one to a redistribution of the ene
quantumd51 dropped in the system at timesnk(X̂). Since
the equilibrium average is assumed to be independent o
initial condition, the first term has to decay to zero ast→`,
with a decay rate corresponding to the characteristic re
ation time to equilibrium.

It is therefore important to understand well the~spectral!
properties of theDFtX in the infinite time limit. WereS(X)
to be the Laplace operator, then were the spectrum ofDFtX
to be composed of Fourier modes, and the relaxation tim
equilibrium would be the slowest mode. However, the m
presence of a singular termZ(X) certainly makes a big dif-
ference. SinceS depends onX one clearly has to study th
decay rates averaged on a full~typical! trajectory, or equiva-
lently one has to compute the ensemble average. In
view, the law of the stochastic process$Z„X(t)…% t50

1`

~namely, the density of active sites and correlations at
times! certainly plays a role.

The numbers characterizing the decay~expansion! rates
of the norm of a small pertubation in the trajectory’s tang
space of a pointX̂ under the action of the infinite produc
matrix DFtX̂, t→`, are theLyapunov exponents. They are
real numbers, well defined under some moderate assu
tions onDFX̂ ~see Ref.@16#!, and are almost surely indepen
dent of X̂. Furthermore they are also independent of
norm ~in finite dimension!.

As shown in Ref.@11# and widely discussed in this pape
all the Lyapunov exponents are different from zero, forfinite
L ~weak hyperbolicity!. One remarkable consequence is th
the asymptotic dynamics lie on a fractal attractor, and t
the Lyapunov spectrum is closely related to the~local! fractal
properties of the invariant set through the Kaplan-Yorke@17#
and Ledrappier-Young formulas@18,11#. At this point a re-
mark is necessary. Hyperbolicity is clearly a particular fe
ture of Zhang’s model, and of similar models where t
amount of redistributed energy from a critical sitei depends
on its energyXi . Conversely, in models like that of BTW o
Dhar, the amount of transferred energy is a constant. A
direct consequence, in these models, the dynamics is sim
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a piecewise translation in phase space, and the uniform m
sure is preserved@4#. Hence all Lyapunov exponents are ze
@19#. There is therefore clearly astructural differencebe-
tween the dynamics of Zhang-type models and sandpiles
first sight this observation seems to ruin the hope of cla
fying Zhang-type models and sandpile models in the sa
‘‘universality class.’’ However, in this paper we show th
the hyperbolicity of Zhang’s model is lost in the thermod
namic limit. That is, some of the Lyapunov exponents go
zero asL→`, with a polynomial rate~exponenttl in Sec.
II ! closely related to SOC critical exponents. It might the
fore well be that these two classes of model share the s
SOC critical exponents in the thermodynamic limit, thou
their dynamics are still of different natures, even in this lim

Due to the skew product structure, the tangent map at
point X̂ admits a natural splitting DF̂5(pu(DF̂X̂),
ps(DF̂X̂)), where the one-dimensional mappu(DF̂X̂) is ex-
pansive. Indeed, the average expansion rate is given by

lL~0!5 lim
T→`

1

T
log@det„pu~DF̂X̂

T
!…#5v̄L log~N!, ~29!

since det„pu(DF̂X̂
T)…5N( i 51

n(T,X̂)v i (X̂). Therefore, sincev̄LÞ0,
there is apositive Lyapunov exponentin the dynamics. Note
that this is due to the excitation rule, and that it simply r
flects the ‘‘chaotic’’ properties of the Bernoulli shift.

A more important issue concernsps(DF̂X̂)5DFX . The
Oseledec theorem@16# asserts that under mild conditions o
DFX there exists a hierarchy of Lyapunov exponentslL(1)
.•••lL(N), which are almost surely constant with respe
to the Lebesgue measure, and a hierarchy of nested
spaces~Oseledec splitting!

RN5V1~X̂!.V2~X̂!.VN~X̂!

depending onX̂, such that the norm of a perturbationv
PVi(X̂)2Vi 11(X̂) is given by

zuDFX
t
•vuz5C~X̂,t !elL( i )•tzuvuz, ~30!

where limt→`(1/t)logC(X̂,t)50 almost surely; that is,
lL( i ) is the exponential rate of variation ofzuvuz. Define
M (X,t)5D̃FX

t
•DFX

t andL5 limt→` M (X,t)1/2t ~the Osele-
dec multiplicative ergodic theorem insures that this limit e
ists almost surely, and is a constant!. Then the Lyapunov
exponents are the logarithm of the eigenvalues ofL. M (X,t)
being symmetric, it admits an orthogonal basis$vi(X,t)% i 51

N ,
and eigenvalues m i(X,t) such that lL( i )
5 limt→`(1/2t)log„m i(X,t)…. Furthermore, eachvi(X,t) con-
verges exponentially to a vectorvi(X̂) in RN, depending on
X̂ @20#. vi(X̂)’s therefore constitutes a basis for the Oseled
splitting. We call theseOseledec modesfor the trajectory of
X̂. They can be numerically obtained from the QR deco
position used in the computation of the Lyapunov spectr
3-6
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~see Ref.@17#!. It was shown in Ref.@11# that lL( i ) are all
negative for finiteL, namely, all vectors inRN are asymp-
totically contracted.

From this discussion, one expects a close connection
tween the Lyapunov spectrum and the energy transpor
Zhang’s model. In particular, the following formula can b
proved@11#:

(
i 51

N

lL~ i !5 log~e!~12v̄L!
^s&L

^t&L
5pL log~e!^s&L . ~31!

This relates the Lyapunov spectrum, which characterizeslo-
cal properties of themicroscopicdynamics, to the avalanch
statistical properties of themacroscopicsystem. Note that
the exponentlL( i ) gives the contraction rate in the directio
vi(X̂) versus thelocal time. One can also define the avera
contractionper avalanche, xL( i ), given from Eq.~22! by

xL~ i !5
^t&L

12v̄L

lL~ i !5
lL~ i !

pL
. ~32!

Then the sum ofxL’s, giving the average volume contractio
per avalanche, is related to the average avalanche size b

(
i 51

N

xL~ i !5 log~e!^s&L . ~33!

Note that ^s&L corresponds to the total energy transp
within one avalanche, and is believed to be related to
total response function@15#. Our formula shows that it is also
equal to the volume contraction in phase space produce
average by one avalanche.

B. Oseledec modes

To each negative Lyapunov exponentlL( i ), i
51, . . . ,N, is associated a characteristic timetL( i )
5ulL( i )u21, the time for of a perturbation in the Oseled
direction i to vanish. This therefore define a hierarchy

tL~1!.tL~2!.•••tL~N!.

Note that there is no contradiction with the expected criti
behavior in the thermodynamic limit, since asL→` there
are an infinite number of characteristic time scales.

From a physical point of view a perturbation can
viewed as a small modification of the initial energy lan
scapeX. It can be localized~for example one site perturbed!
or spread. The attenuation is due to two distincts effe
propagation through the lattice, and dissipation at the bou
aries.

Note that according to the Oseledec mode under con
eration, the contraction can be due~on average! to the effect
of one avalanche@if tL( i ) is small compared to the averag
avalanche size#, or to the cumulative effect of many ava
lanches@if tL( i ) is large#. The coefficientxL( i ) @Eq. ~32!#
gives the average contraction per avalanche for thei th Os-
eledec mode. Therefore the number 1/xL( i ) gives an esti-
mate of the number of avalanches needed to have a redu
01613
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of the initial perturbation of a ratio 1/e for this mode. There-
fore, a crossover point can be estimated by

xL~ i c!;1. ~34!

We will call Oseledec modes corresponding tolL( i )
!lL( i c) @lL( i )@lL( i c)# slow ~fast!.

1. Bounds on the first negative Lyapunov exponent

We give a bound on the first Lyapunov exponent rela
to the energy dissipation at the boundaries. CallF j

out(t,X̂)

5
def

12( i 51
N DFX,i j

t . Since the energy is locally conserve

F j
out(t,X̂) is the ratio of the initial energyXj given by the

site j to the boundary]L in t time steps. In other words, th
energy coming fromXj and lost at timet is F j

out(t,X̂)Xj .
The following holds.

Proposition 1: The largest negative Lyapunov expone
lL(1) admits the following bounds:

0. lim
t→`

1

t
log@12min

j
„F j

out~ t,X̂!…#

>lL~1!> lim
t→`

1

t
log@12max

j
F j

out~ t,X̂!#. ~35!

This is interpreted as follows. Ast→`, F j
out(t,X̂)→1, ; j ,

;X̂, since, eventually, all the initial energy coming fromX is
lost at the boundaries. The limit limt→`(1/t)log@1
2F j

out(t,X̂)# gives the exponential rate of convergence

F j
out(t,X̂) to 1. In other words, it gives the exponential d

crease for the ratio of the initial energy still in the lattice a
given time. The maximal negative Lyapunov exponent
bounded by the extremal dissipation rates. One sees, th
fore, that the contraction in the principal Oseledec mode
mainly due to the dissipation at the boundaries. We shall
later thatlL(1) is essentially related to the so-calleddissi-
pation rate.

Proof: It is easy to show that there exists a timets de-
pending onEc , e, andd such that, whatever the value ofX̂
each site in the lattice has relaxed at least once after
time, and therefore all sites of the boundary have dissipa
energy. At timet the energy coming from sitej with initial
energy Xj , and redistributed into the lattice, i
( i 51

N DFX,i j
t Xj . For t>ts , F j

out(t,X̂).0, and( i 51
N DFX,i j

t is
bounded away from 1. SinceDFX̂

t is a matrix with positive
entries,

min
j

S (
i 51

N

DFX,i j
t D 512max

j
F j

out~ t,X̂!<r~DFX
t !

<max
j

S (
i 51

N

DFX,i j
t D

512min
j

F j
out~ t,X̂!

,1, ~36!
3-7
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wherer(DFX
t ) is the spectral radius ofDFX

t .
The largest negative Lyapunov exponent is given by

lL~1!5 lim
t→`

1

t
log~ zuDFX

t uz2!, ~37!

where zu u z2 is the L2 norm. In Eq.~37! the limit does not
depend onX̂, providedX̂ belongs to the support ofm̂L . One
hasr(DFX

t )< zuDFX
t uz2, and, therefore,

lL~1!> lim
t→`

1

t
log@12max

j
F j

out~ t,X̂!#.

Furthermore, all norms being equivalent in finite dime
sions, Eq.~37! also holds for theL1 norm where

zuDFX
t uz15sup

X

(
i , j 51

N

DFX,i j
t uXj u

(
j 51

N

uXj u

.

DFX,i j
t ’s being positive, the supremum is certainly achiev

for positiveXi values. Therefore,

zuDFX
t uz15sup

X

(
j 51

N

@12F j
out~ t,X̂!#Xj

(
j 51

N

Xj

512 inf
X

1

(
j 51

N

Xj

(
j 51

N

F j
out~ t,X̂!Xj

<12 inf
X

min
j
„F j

out~ t,X̂!…

The limit limT→` log@12minj„F j
out(t,X̂)…# is a constant

for any X̂ in support ofm̂L . Hence

lL~1!< lim
t→`

1

t
log@12min

j
„F j

out~ t,X̂!…#

2. Stabilizing modes

The contraction in the principal Oseledec mode~the first
negative Lyapunov exponent! is mainly due to the dissipa
tion at the boundaries. On the other hand, it is possible
have a large contraction in one local time step without rea
ing the boundaries. Indeed, the tangent matrixDFX has the
following property, which can be checked by direct comp
tation.

Proposition 2: Let L5Lc(X) % Ln(X), where Lc(X)
5$ i PLuXi>Xc%, Ln(X)5$ i PLuXi,Xc%, and nc(X)
5NLc(X); thenDFX hasnc(X) eigenvaluese correspond-
ing to the eigenvectors
01613
-

d

to
-

-

ki~X!52dei2 (
j PUi

ej , i PLc~X!, ~38!

whereUi denotes the set of sites inL at distance 1 fromi.
There are alsoN2nc(X) neutral eigenvalues associated wi
the eigenvectorsei , i PLn(X).

The eigenvectorski produce arbitrarily large contractio
as e→0. In particular, in the original Zhang model, whe
e50, they correspond tokernel modes, which have eigen
values 0. Note that, in this case, the dimension of the ke
of the product tangent mapDFX

t increases witht. However,
it is strictly lower thanN as t→` @11#. It is easy to check
that these modes have zero energy, except if some of theei ’s
correspond to sites neighboring the boundary. This occ
with small ~but nonzero! probability. These modes act a
directions where a single local time step is sufficient to
duce the initial perturbation by a factore, with a small varia-
tion of the total energy on average. They correspond dyna
cally to directions transverse to the attractor, and th
contraction corresponds to a fast convergence onto the at
tor. For this reason we call themstabilizing modes. In the
Lyapunov spectrum they can be identified because the
responding Lyapunov exponents go to2` as e→0, while
the other part of the spectrum weakly depends one ~see Fig.
1!.

3. Transport operator

It is usually not possible to give an explicit formula fo
the whole Lyapunov spectrum, except in some specific ca
@21#. Here we propose a mean-field ansatz which gives g
results for the slowest modes, and has a nice interpretatio
terms of random walk. It is based on the following observ
tions.

The Lyapunov exponents are the eigenvalues of the
trix L5EL@L#5EL@ limt→`(D̃FX

t
•DFX

t )1/2t#. Since the ma-

trix D̃FX
t
•DFX

t is bounded inL2 norm, ;X, ;t, from the

Lebesgue theorem one hasL5 limt→` EL@(D̃FX
t
•DFX

t )1/2t#.
On the other hand, the matrix

FIG. 1. Lyapunov spectrum fore50.1 and 1027, L515, and
Ec52.2.
3-8
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LYAPUNOV EXPONENTS AND TRANSPORT IN THE . . . PHYSICAL REVIEW E 64 016133
L~ t !5EL@DFX
t # ~39!

characterizes the~ensemble! average energy transport int
time steps. However, the connection betweenL(t) andL is
loose.

Were the transport to be normal, namely, wereDFX to be
independent ofX and of the formDFX5I 1gD, whereg is
some constant, thenL(t) would be equal to (I 1gD) t. In this
case, L(t) would be constant and symmetric. The
EL@(D̃FX

t
•DFX

t )1/2t#5I 1gD and L5I 1gD. In this case
the Lyapunov exponents would be eigenvalues of a one-
transport operatorL5I 1gD ~Fourier modes!.

More generally, the~naive! hope would be that of finding
an effective transport operatorL such thatL(t)5L t, and
whose singular values~or eigenvalues ifL is self-adjoined!
would give the Lyapunov spectrum. However, there isa pri-
ori no hope of finding such an operator, in general. Note
particular, that the assumption of independence of the m
cesDFX(t) , the first step toward a mean-field approach,
not a sufficient condition. Since, in this case,EL@DFX

t #
5EL@DFX# t, one is led to proposeL5EL@DFX# as a one-
step operator. However, one needs further conditions to
sure that the singular values ofL give the Lyapunov expo-
nents ~see, for example, Refs.@21,22#!. It appears,
nevertheless, that in Zhang’s model an effective transp
operator can be found from a mean-field treatment wh
well approximates theslowest modes.

The first obstacle toward a mean-field approach lies in
independence assumption. The matrixL(t) is a sum of time
correlations terms of the form

EL@S„X~ t r 21!…S„X~ t r 22!…•••S„X~ t0!…#

whose entry (i , j ) writes

( i 1 , . . . ,i r 21
D i ,i r 21

. . . D i 2 ,i 1
D i 1 , j Prob@Zi r 21

„X~ t r 21!…

51, . . . ,Zi 1
„X~ t1!…51,Zj„X~ t0!…51#

.

Clearly, the nonvanishing terms in this sum are those co
sponding to a path fromj to i, where each intermediate sit
has been active at least once with a nonzero probability
simple glance at this formula shows thata priori all time
correlation functions of the joint probability of active site,
Prob@Zi r 21

„X(t r 21)…51, . . . ,Zi 1
„X(t1)…51,Zj (X(t0))51#

have to be considered.
However, Zhang’s model, as a hyperbolic dynamical s

tem, has an exponential correlation decay~for finite L). The
largest correlation decay rate is given by the entro
v̄L log(N). This decay rate is quite a bit faster than the ch
acteristic times related to the slow modes~for example, the
correlation decay rate of a site with itself is about20.025 for
Ec52.2, e50.1, andL520, corresponding roughly to th
320th exponent in the spectrum, while the slowest Lyapu
exponent value is20.000 209 871). More generally, w
show in Sec. IV thatlL(1);v̄L /Ld, to be compared to the
decay ratev̄L log(N). On the other hand, for slow modes,
01613
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small perturbation has essentially no variation during o
step of an avalanche. In other words, the slowest Osele
modes are not sensitive to the fast changes~one local time
step! of the individual matricesDFX

t @the fluctuations of
the Zj„X(t)…’s# but, rather, to average variations on th
characteristic time scaletL( i )51/lL( i ), which is quite a bit
longer than a local time step. This suggests that one sh
consider the projection of the matricesDFX(t)’s on the
slow Oseledec space as independent. This leads to pro
EL@DFX#5I 1aDrLI as a one-step transport operator. No
that we obtain the same result by assuming thatZi„X(t)…’s
are independent. Indeed, in this case

Prob@Zi r 21
„X~ t r 21!…51, . . . ,Zi 1

„X~ t1!…51,Zj„X~ t0!…51#

5rL~ i r 21! . . . rL~ i 1!rL~ j !
.

ThenL(t)5(k51
t Ct

k(DrLI )k5(I 1aDrLI ) t.
This approximation gives correct results, provided th

one multiplies the density of active sites by 2. This appro
mation neglects an important effect. ProvidedEc.e/(1
2e), a sitecannot relax for two successive time steps@11#,
and therefore it relaxes at most only half of the time duri
one avalanche. This means, in particular, that the rand
variablesZi„X(t)…,Zi„X(t11)… arenot independent, and that
the probability that one site relaxes at timet11 depends on
what happened at timet. In addition, two neighboring sites
cannot be simultaneously active. In a certain sense, the
tice is ‘‘blinking:’’ during one avalanche all active sites a
at pairwise distance@11#. This, therefore, introduces stron
correlations betweenZ„X(t)… andZ„X(t11)….

However, one can circumvent the problem by repara
etrizing the time and considering the evolution of the proc
every two times steps. Equivalently, one replaces the sto
chastic process$Z„X(t)…% t51

1` by a new process$Y(t8)% t851
1`

5$Z„X(t)…,Z„X(t11)…% t51
1` , whose componentsYk(t) take

values in$0,1%2, where the event (1,1) has zero probabil
and wheret85t/2. One can then encode theYk(t8) values by
0→(0,0) ~no relaxation at times t,t11) and 1
→(0,1),(1,0) ~relaxation at timet or at time t11). This
leads to the definition of a new ‘‘density of active sites
rL8( i )5Prob@Yi(t8)51#5Prob@Zi„X(t)…51 or Zi„X(t11)…
51]. Since the events$Zi„X(t)51…% and $Zi„X(t)11…
51% are disjoints, we haverL8( i )5Prob@Z„X(t)…51#
1Prob@Z„X(t11)…51#52rL( i ). Assuming now that the
Yk(t8)’s are independent, and consideringrL8( i ) as the effec-
tive density of active sites, one obtains an effective transp
operator:

L5I 12aDrLI ~40!

Calling g i the singular values ofL, our mean-field ansatz
suggests that the slowest Lyapunov modes are given by

lL~ i !5 log~g i !. ~41!

Note that this operator is self-adjoined for the metricrLI ,
and that the corresponding matrix can be made symmetri
the variable changerL

21/2I .
To check the validity of this ansatz, we first computed t

density of active sites on a 20320 lattice, and numerically
3-9
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found theg i ’s from these data.6 At the same time we com
puted the Lyapunov spectrum. A plot of the two curves
drawn in Fig. 2. One finds a very good agreement ove
large part of the spectrum, and the discrepancy increa
toward small times scale, as expected.

4. Role of the spatial variations in the density of active sites

It is usually assumed in the SOC literature, when deal
with the model’s spatial properties, that only the density
active sites, and more precisely, its lattice averagerL

av , has
to be taken into account. One therefore neglects the sp
dependence ofrL . In our approach this would lead to a
effective transport operatorI 12arL

avD, corresponding to
normal transport. In this case, the slowest Oseledec mo
would simply be the eigenmodes of the Laplacian with z
boundaries conditions on]L, and the Lyapunov exponent
would then correspond to the normal diffusion modes

6We were not able to go beyondL520 in the Lyapunov spectrum
computation. We used a version of the Eckmann-Ruelle algori
@17# revisited by Von Bremmenet al. @23#. Nevertheless, we
needed two weeks of computation on a Pentium II 300 for the c
L520, with a relative accuracy of 1023.

FIG. 2. Lyapunov spectrum, logarithm of theL singular values,
and normal diffusion modes forEc52.2, e50.1, andL520. ~a! 80
first modes.~b! Full spectra drawn with lines in order to see th
shape better.
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lL~ i !5 logH U112arL
av(

k51

d FcosS pnk

L11D21GUJ , ~42!

where the Laplacian modes are parametrized by the quan
numbersn5(nk), k51, . . . ,d, sorted such that the corre
sponding eigenvalues are decreasing~and i refers to the
placement of the exponent in this sequence!. In Fig. 2, we
also plot the diffusion eigenvalues of Eq.~42!. The computed
Lyapunov exponents are different from these values exc
for the largest ones. This approximation is therefore
crude, and gives a wrong spectrum. Note in particular t
the shapeof the spectrum differs, namely, the discrepan
cannot be corrected by a mere multiplication ofrL

av by some
factor. Since the Lyapunov exponents contain all the relev
information about the dynamics at stationarity, our conc
sion is that the nonhomogeneity ofrL( i ) plays a key role in
computing dynamical quantities, and implies, unfortunate
that the zeroth order ‘‘mean-field’’ approaches, which a
proximate the density of active sites as a constant, lea
incorrect estimates for finite size when dealing with interm
diate time scales. On the other hand, this should lead
correct results when dealing with the longest time sca
since the first modes are well approximated by a transp
operator whererL( i ) is considered as uniform.

In the literature one often encounters a~apparent! contra-
diction ~see, for example, the original paper by Zhang@5#
and a subsequent analysis by Pietroneroet al. @24#!. One
assumes the transfer of energy on large time scales to
normal diffusion, while at the same time an anomalous d
fusion exponentz5” 2 is computed. It was certainly clear i
the spirit of these authors that one has to distinguish
average transport on many avalanches~long time scales!
from the average transport within one avalanche~character-
ized byz). Our results on the Lyapunov spectrum makes t
distinction quantitative. We show that transport on the lon
est time scales is normal with a good approximation, wh
the average transport withinone avalanche, on time scale
corresponding roughly to the crossover pointlL( i c), is
clearly anomalous.

5. Random walk picture

The operatorL is the Laplace-Beltrami operator assoc
ated with random diffusion in a ‘‘medium’’ or a landscap
that is not flat, corresponding to the metricg5rLI , whereI
is the identity matrix onRN. This has a nice interpretation i
the so-called random walk picture.7 Assume, for a moment
that the energy of a site is composed by~undivisible! energy
quantah that can be made arbitrarily small~this is way to
‘‘map’’ Zhang’s model to a sandpile!. Assume that we are in
the stationary regime, and that at an initial time we drop
grain in some place and study its motion. At each time s
where it is involved in a relaxation process, this grain mak

m

se 7B.C. is very grateful to P. Grassberger and D. Dhar for illum
nating discussions on this point in Trieste.
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a jump at random in one of the 2d directions in the lattice.
From this point of view, the stochastic dynamics of the gr
is driven by the underlying dynamics of Eq.~1!. If we as-
sume that the evolution is Markovian, the probability of
jumping from i to some nearest neighborj depends only on
the state ofi at time t, and is given by a transition rateWi j
5arL( i ), while the probability of staying at the same pla
is 12rL( i )(12e) @remember that only an amounta5(1
2e)/2d of the energy is transferred to the neighbors whe
site relaxes#. From this consideration, one obtains the eq
ct
c

ili

r
io

ll
x
e
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ch
at

.

o

is
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a
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tion for the probabilityP( i ,t) that a grain is at placei at time
t before it leaves the latticeP(•,t11)5@ I 1aDrL#P(•,t)
5@ I 1aDrL# tP(•,1), and one recovers the operator obtain
above when assuming that theZi(t)’s were independent. In-
deed, the independence assumption of theZi(t)’s is equiva-
lent to the Markovian assumption in the random walk p
ture. The probability of jumping for a grain at timet depends
a priori on its whole past via a Chapman-Kolmogorov equ
tion, whose transfer matrix is a sum of terms containing c
ditional probabilities
Prob@Zi r 21
„X~ t r 21!…51uZi r 22

„X~ t r 22!…51, . . . ,Zi 1
„X~ t1!…51,Zj„X~ t0!…51#

5
Prob@Zi r 21

„X~ t r 21!…51,Zi r 22
„X~ t r 22!…51, . . . ,Zi 1

„X~ t1!…51,Zj„X~ t0!…51#

Prob@Zi r 22
„X~ t r 22!…51, . . . ,Zi 1

„X~ t1!…51,Zj„X~ t0!…51#

5Prob@Zi r 21
„X~ t r 21!…51#,
h
e
n

ion-
One
where the last equality holds when theZk(t)’s are indepen-
dent. In this case,Wi j 5a Prob@Zi„X(t)…51#5arL( i ) for
the j nearest neighbors ofi.

However, we saw above that the process is not stri
Markovian, since a jump from a given site cannot take pla
at two successive time steps. In other words, the probab
of a jumpi→ j depends on the state ofi at timet andat time
t21. The system has some memory~at least two time steps!.
However, defining the random variablesYk(t)’s, as above,
and assuming them to be independent, amounts to rende
the random walk Markovian by a suitable reparametrizat
of the process, and gives a transfer equation

P~•,t11!5@ I 12aDrL#P~•,t !5L tP~•,1! ~43!

Therefore, the operatorL characterizing the decay of a sma
perturbation can also be interpreted as the transfer matri
a random walk, in a medium where the diffusion rate d
pends on the location.

6. Density of active sites and average energy
flowing towards the boundaries

Equation ~43! characterizes the energy transport in t
lattice, but does not take into account the source term~addi-
tion of a grain! required to reach stationarity. Indeed, ea
time a grain exits the lattice, one must add another grain

random placei, with probabilityv̄L( i ) ; this is a source term
Call PL the equilibrium state of the random walk, andV(]l)
the set of sites at distance 1 from the boundary. The pr
ability for a grain to exit is 2a( j PV(]l)rL( i )PL( i ). This is
obviously proportional to the outgoing energy flux, which
ly
e
ty

ing
n

of
-

a

b-

,

at stationarity, equal to the incoming flux~the probability of
adding a grain in the lattice!, namely8

v̄L52a (
j PV(]l)

rL~ j !X̄L~ j !. ~44!

The complete equation for the energy at stationarity is

2aD@rLX̄L#1v̄L~ i !50, ~45!

with zero boundaries conditions and with constraint~44!.
In this equation one distinguishes alocal transport term,

and a source term which depends on aglobal constraint.
When the excitation is uniform, Eq.~45! reduces to
D@rLX̄L#1(v̄L/2aLd)50.

The difficulty in solving this equation is that it deals wit
the productrLX̄L . On the other hand, it is known in th
literature thatX̄L converges to a uniform energy distributio
over the lattice asL→` @25#. Assume now that we can write
X̄L as

X̄L5X̄01 f ~L !, ~46!

where zu f (L)uz goes to zero asL→`, and whereX̄0 is spa-
tially uniform, i.e., X̄0( i )5const5 x̄L . At zeroth order, for
rL one obtains the equation

8The cautious reader has noted that this equation is not dimens
ally correct, since no energy term appears on the left-hand side.
should indeed multiply the left-hand side byd, the input energy
quantum, which is set to 1 throughout this paper.
3-11
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DrL1
v̄L

2aLdx̄L

50, ~47!

where Ldx̄L5Etot , the average total energy in the lattic
The solution of this equation can easily be found by deco
position on the eigenmodes of the Laplacian. The gen
solution is

rL~x!5(
n

An)
i 51

d

sin~kixi !, ~48!

wheren5(n1 , . . . ,nd) is the set of quantum numbers p
rametrizing the eigenmodes of the discrete Laplace opera
sn52@( i 51

d cos(ki)2d# is the corresponding eigenvalu
with ki5nip/(L11),

An52
2d21v̄L

aEtot~L11!d

)
i 51

d

Cni

sn
,

and

Cni
5 (

x51

L

sin~ki•x!5~21!mi

sinS nipL

2~L11! D
sinS nip

2~L11! D
,

whereni52mi11. Surprisingly, this already gives quite
good approximation forrL , which becomes better and bett
asL increases~see Figs. 3 and 4!.

Away from the boundaries, one expects rotational inva
ance forrL(x). This can be checked by expanding the fun
tion sin near toxi5L/2, i 51, . . . ,d up to third order. One
obtains the well known paraboloid form@26# rL(x);K0

2K1( i 51
d xi

2 , where the constantsK0 and K1 can be easily
deduced from Eq.~47!.

One also obtains the average density of active sites,rL
av

5(1/Ld)( i 51
N rL( i ),

FIG. 3. Plot of the density of active sites and solution of E
~47! for Ec52.2, e50.1, andL520.
01613
-
al

or,

i-
-

rL
av52

2d21
•v̄L

Ld~L11!daEtot
(

n

)
i 51

d

Cni

2

sn
, ~49!

which is expected to hold for sufficiently largeL. In Fig. 4
we show a plot in which it clearly appears that this formu
gives already a quite good estimate forL515.

IV. SCALING PROPERTIES OF THE LYAPUNOV
SPECTRUM

Zhang’s model, as a hyperbolic dynamical system, can
exhibit a critical behavior for finite size, since it has an e
ponential correlation decay.9 However, since a critical be
havior is conjectured in the thermodynamic limit, one e
pects that hyperbolicity is lost asL→`, namely, some of the
Lyapunov exponents go to zero. It is therefore of cruc
importance to know the behavior of the Lyapunov expone
asL→`. In this section, we first discuss the time scale se
ration between the activation rate and the dissipation r
which is believed to be a fundamental ingredient to ha
SOC, and its links to the Lyapunov exponents. We th
show that using a finite size scaling ansatz provides a sca
exponent from which the scaling of some SOC observab
can be obtained.

A. Time scale separation

Equation~49! can be written as

rL
av52

2d21v̄L

LdaEtot

gL , ~50!

9The exponential correlation decay is a general property of hyp
bolic systems, but in the presence of singularities one can
observe a polynomial correlation decay and a weak initial condit
senstivity@9#.

.
FIG. 4. Plot ofrL

av and solution of Eq.~49! vs L, for Ec52.2
ande50.1.
3-12
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where (L11)dgL5(n() i 51
d Cni

2 /sn). Let us estimate the

scaling of this sum asL→`. First, setd51 and fix a.0
arbitrarily small. The sum overn5n1 can be split into one
part such thatn,(L11)a and another part wheren>(L
11)a. In the first sum, Cn;2(L11)/np and sn;
2(pn)2/(L11)2, while the second sum is smaller than (L
11)C(a), whereC(a) is bounded fora.0. ThereforegL
;(L11)3S, where S;(n,(L11)a(1/n4) remains bounded
as L→`. ThengL;(L11)3. This argument can be gene
alized for any d by splitting the sum over n
5(n1 ,n2 , . . . ,nd) into sums wherek indexes are smalle
that a(L11), k going from 0 tod. It is easy to see that th
main contribution is due to the terms such thatd indexes are
,a(L11), giving a leading contribution((L11)2d12 and
gL;Ld12. We therefore conclude thatrL

av scales like

rL
av;

v̄L

Etot

~L11!d12

Ld
;

v̄LL2

Etot
5

v̄LL2

LdX̄0

. ~51!

We seth5v̄L /Ld for the driving rate, and assume thate

5h/rL
av5 x̄LL22. One obtains the energy conservation eq

tion h5rL
ave, and thereforee is the energy dissipated pe

active site and per unit time. This corresponds to thedissi-
pation rate introduced by Vespignaniet al. @15#. Since 0
, x̄L,Ec , ;L, x̄L plays no role in the asymptotic scalings
L, and thereforee;L22, as already anticipated by a mea
field approach in Ref.@15#.

The average value of observables like size, duration,
is known to diverge with a power law scalinĝx&L;Lgx.
Therefore 1/̂t&L→0 like L2gt as L→` wheregt .1 @3#.
Since 0<v̄L<1 @see Eq.~20!#, Eq. ~21! implies that pL

5 f (1/̂ t&L)5(a1 /^t&L)2(a2 /^t&L
2)1O(1/̂ t&L

3). This is

particularly clear forEc,1, sincepL5v̄L , which implies
pL51/(11^t&L), and thereforea151,a251. For general
Ec , using this form gives, from Eq.~21!, a151,

pL;
1

^t&L
2

a2

^t&L
2

, ~52!

and

v̄L;
a2

^t&L
~53!

asL→`. It follows, therefore, that

rL
av;L2gt122d ~54!

We have therefore shown that

h→0, e→0, rL
av5

h

e
→0 as L→` ~55!

In Ref. @15# Vespignaniet al. discussed the necessity of th
triple limit in order to have SOC. However, in their analys
the activation and dissipation rate were free parameters~tun-
able ‘‘by hand’’!. In Zhang’s model,h and e are not free,
01613
-

c.

since they are fully determined by the dynamics. Therefo
we have shown that the three limits discussed by Vespign
et al. @15# are indeed achieved, without external fine tuni
of some parameter, in Zhang’s model, by the simple c
straints one imposes on the dynamics~adiabatic driving!.

From Eq.~53! we have that the positive Lyapunov exp
nent ~the entropy! v̄L log(N)→0 in the thermodynamic
limit. On the other hand, the first negative Lyapunov exp
nent is given with a good accuracy by the normal diffusi
operator 112rL

avD ~see Fig. 2!, which implies thatlL(1)
;rL

avL22. Another way of arguing is to note that from theo
rem 1, lL(1) scales like the average ratio of energy dis
pated by one site. From the local conservation of ener
lL(1)x̄L;h; thenlL(1);rL

avL22. Therefore,lL(1)→0 in
the thermodynamic limit. Actually, the finite-size scalin
analysis of Sec. IV B suggests that a large number of ne
tive Lyapunov exponents also go to zero asL→`. But the
double limitlL(0)→0,lL(1)→0 already shows that thehy-
perbolicity is lost in the thermodynamic limit. Note, how-
ever, that these two exponents are not independent, s
local conservation of energy imposeslL(1)x̄L;h which im-
plies lL(1)/lL(0);L2d/ log(N). Incidentally, this validates
the separation of time scale between the correlation de
time 1/lL(0) and the largest transport characteristic tim
1/lL(1) we used in Sec. III when deriving the mean-fie
transport equation for the slowest modes.

B. Finite size scaling of the Lyapunov spectrum

An approximate expression for modes related to transp
in the lattice is obtained from the operatorL @Eq. ~40!#,
whereas an approximate equation forrL is given by Eq.~49!.
However, at the moment we do not have an analytical
pression for the modes ofL. In this sequel, we restrict to th
scaling of the slowest singular values ofL with the system
size.

When dealing with a scaling analysis in the thermod
namic limit, one usually first tries to use finite size scali
~FSS!. This is a standard tool in statistical mechanics. It h
also been proposed in SOC as an ansatz for the scaling o
probability distribution of avalanches observables@7#. How-
ever, its validity was recently questioned in this case@8#.

Nevertheless, since this is certainly the first ansatz
can use to try to do a scaling analysis, in this section
attempt a finite-size scaling ansatz for the Lyapunov sp
trum, and look at the results and conclusions we are led t10

We assume, therefore, that, for anyL, there exists a chang
of coordinatesi→fL( i ),lL→cL(lL), depending onL, such
that the points of the spectrum$ i ,lL( i )% are mapped onto the
same ‘‘universal’’ curve11 $x,l(x)%, where l(x)5cL+lL

+fL
21(x). Furthermore we assume~as in usual finite size scal

ing! that the coordinate changes are simple dila

10Note that the FSS of the Lyapunov spectrum is not a gen
property of dynamical systems, even close to a phase trans
point @27,28#.

11Note that this curve depends on the parametersEc , e, andd.
3-13
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tions wherefL(x)5Lbl
•x, cL(x)5Lbl•tl(x). Then

l~x!5LbltllL~xL2bl!. ~56!

Equivalently, knowing the curve$x,l(x)%, the spectrum for
a given size is

lL~ i !5L2bltll~ iL 2bl!, i 51, . . . ,Ld. ~57!

Since the set of indicesi P$1, . . . ,Ld% it is evident that

bl5d. ~58!

The exponenttl can be numerically computed by sever
means. The first is to minimize the Euclidean distance
tween the spectra obtained for different lattice sizes, w
respect totl . Another way is to compute the sum of th
Lyapunov exponents. Indeed

SL5
def

(
i 51

N

lL~ i !5L2dtl (
y5L2d

1

l~y!;Ld(12tl)E
L2d

1

l~y!dy.

Assuming thatl(y) is bounded asy→0, and that 0,K
5*0

1l(y)dy,`, one obtains

SL;K•Ld•(12tl), ~59!

which allows one to computetl . The value oftl for d52,
and e50.1 and differentEc values are given in Table I
These values were obtained for a sample of spectra froL
510 to 20. We note, in particular, thattl depends onEc . At
the moment we have no way of knowing whether this eff
persists in the thermodynamic limit. Note that these val
are given as indications, but that a correct estimation oftl

certainly requires further investigations for consequen
larger system sizes. These numerical studies are beyond
present computer performances.

The data collapse of spectra is drawn in Fig. 5. Thoug
good data collapse is not sufficient to ensure FSS, Fig
indicates that this gives a good approximation of the sp
trum. Actually, we do not expect FSS to hold for the who
spectrum~in particular the kernel modes could have differe
scalings!. For the following discussion, however, it is suffi
cient to assume that FSS holds for the slowest modes. Th
a reasonable assumption, since these modes are well app
mated by normal diffusion.

We now relate the exponentsgs , andgt ~and other char-
acteristic exponents likez, the anomalous diffusion expo
nents! to tl . Note thatgx is related to the critical exponen

TABLE I. Computed values oftl vs Ec , obtained from Eq.
~59!, for samples of sizeL510–20.

Ec tl

0.6 0.632
1.1 0.622
1.5 0.621
2.2 0.560
4.1 0.524
01613
l
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tx ,12 and therefore our discussion suggests that there
link betweentl and the critical exponentsts andtt .

FSS leads tolL(1)5L2d•tll(L2d). However the analy-
ticity properties ofl near zero are not known. Assume th
l(x);xa and x;0, wherea may depend ond ~seemingly
a51 for d52). Then lL(1);L2dtl2da. From lL(1)
;rL

avL22, one obtains

rL
av;L2dtl122da, ~60!

and, from Eq.~54!, gt1d5d(tl1a). Finally, from Eqs.
~31!, ~52!, and~59!, one obtains:

dtl5d2gs1gt , ~61!

which gives

gs52, ~62!

gt5dtl122d, ~63!

and

a5
2

d
. ~64!

The equation forgs was already anticipated by many autho
on the basis of numerical simulations@25#, and the mean-
field approach@15# and was proved in Dhar’s model ford
52 by Dhar himself@29#. The equation fora is well verified
at d51 and 2. However, this relation deserves further inv
tigation in larger dimensions. It suggests, in particular, t
the curvel(x) is not C1 at zero ford.2, i.e., the largest
exponents do not go to zero in a smooth way asL→`.

Finally, the anomalous diffusion exponentz, characteriz-
ing the average transport within one avalanche, is equal togt

12Under the finite size scaling assumption ofPL(x), one finds that
gx5bx(22tx), whereLbx is the scaling for the maximal value ofx
in a lattice of sizeL.

FIG. 5. Data collapse of the Lyapunov spectrum forEc52.2,
e50.1, andL512, 14, 16, and 18.
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if one assumes that the average avalanche radius scalesL
in any dimension@3#. Equivalently, one can note that th
crossover point for thexL( i ) spectrum @Eq. ~32!# is
;Lz/^t&L and does not depend onL. From Eq.~63! it fol-
lows that the transport on time scales of order^t&L is anoma-
lous (z,2) if tl,1. Note, however, that this argument a
sumes that FSS is still valid at the crossover point. T
result suggests therefore that some of the critical expon
of SOC can be obtained from a simple scaling ansatz on
Lyapunov spectrum.

As a final remark, note that theEc dependence appearin
in Table I would have to be clarified, since it suggests t
the critical exponents depend onEc . This was already ar-
gued in Refs.@9–11#, and suggested from numerical simul
tions~though not discussed! in Ref. @30#. Note, however, that
the dependence of dynamical quantities in the control par
eter in a dynamical system is more a rule than an except
One certainly needs very special properties to ensure tha
critical exponents are constant in the limitL→`, whatever
the value ofEc . If this happened to be true, it would mea
that Zhang’s model is somehow nongeneric, at least fro
dynamical system point of view.

V. CONCLUSION

In this paper, we investigated the dynamics of Zhan
model in terms of the Lyapunov exponents and Osele
modes. Due to the piecewise affine structure of the mo
the Lyapunov exponents, usually related to the local prop
ties of the dynamics~expansion rates, fractal dimension
entropy!, also appear as characteristic rates of energy tra
port in the system. We showed that the spectrum is roug
divided into two parts: slow modes, corresponding to tra
port and dissipation; and fast modes, essentially associ
with the stability of the attractor. Even if the Oseledec mod
are analogs of Fourier modes in normal diffusion, they
x

,

. A

t,
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not normal, because the density of the active sites is
spatially homogeneous. The slow Oseledec modes co
spond, rather, to diffusion in a metric which is not flat and
given by the density of active sites. Only for the slowe
mode are the Lyapunov exponents the same as for the la
rate in normal diffusion. This is important, since the slowe
mode characterizes the equilibrium properties of the mo
This means that the usual mean-field approaches, which
place the density of active sites by its lattice average,
correct if one considers properties related to the longest t
scales. Since the critical exponentsgs and gt characterize
statistical properties on the largest time scale, they are n
rally related to the slowest Lyapunov exponent.

We investigated the scaling properties of the spectr
with respect to the lattice size and found that finite size sc
ing gives a good approximation. In particular we extracte
critical exponenttl which is related to the usual critica
exponents computed in the literature. However, there
clearly a lot more information in the Lyapunov spectra th
in the usual critical exponents.

The scaling form also shows that in the thermodynam
limit a part of the spectrum goes to zero, corresponding
translation invariance and zero dissipation. In this w
Zhang’s model is not hyperbolic in the thermodynamic lim
This limit now has to be studied in more detail, especially
far as the vanishing of correlations is concerned. It may
deed be a way to make a connection between SOC and
usual critical phenomena.
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