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Lyapunov exponents and transport in the Zhang model of self-organized criticality
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We discuss the role played by Lyapunov exponents in the dynamics of Zhang’'s model of self-organized
criticality. We show that a large part of the spectr{ime slowest modeds associated with energy transport
in the lattice. In particular, we give bounds on the first negative Lyapunov exponent in terms of the energy flux
dissipated at the boundaries per unit of time. We then establish an explicit formula for the transport modes that
appear as diffusion modes in a landscape where the metric is given by the density of active sites. We use a
finite size scaling ansatz for the Lyapunov spectrum, and relate the scaling exponent to the scaling of quantities
such as avalanche size, duration, density of active sites, etc.
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[. INTRODUCTION number of papers written on the subject, some basic prob-
lems are still open.

Within the past ten years the notion of self-organized Guided by the wisdom coming from renormalization
criticality (SOQ has become a new paradigm for the expla-group analysis and phase transitions in equilibrium systems,
nation of a huge variety of phenomena in nature and sociat seems natural to look for a possible classification of the
sciences. lIts origin lies in the attempt to explain the wide-models into universality classes characterized by a set of
spread appearance of power-law-like statistics for charactecritical exponents, for a family of “relevant” avalanche ob-
istic events in a multitude of examples, such as the distribuservables. However, the link between the “criticality” of the
tion of the size of earthquakesflioise, amplitudes of solar ‘“out of equilibrium” SOC models and the usual statistical
flares, and species extinction, to name only a few casesiechanics of phase transitions in equilibrium systems re-
[1-3]. In this paradigm, the dynamics occur as chain reacmains to be clarified6]. Furthermore, apart from the fact
tions or avalanches. Furthermore, a stationary regime ithat the commonly studied observable&e, duration, area,
reached, where the average incoming flux of external perturand gyration radiusdo not necessarily consitutecamplete
bations is balanced by the average outgoing flux that camet allowing one to classify the models, even a computation
leave the system at the boundary or by dissipation in thef the critical exponents, from numerical data is not easy,
bulk, and there is a constant flux through the system. In thiand there is not yet any agreement on the way to do this. Itis
stationary state, referred to as tB®C statethe distribution  clear that the simple measurement of the slop®aix) in
of avalanches follows a power law—that is, there is a scal¢he linear range of a log-log plot is not reliable, due to the
invariance reminiscent of thermodynamic systems at théinite sample fluctuations, and because the explicit form of
critical point. A local perturbation can induce effects at anythe cutoff is not known in general. The computation Qf
scale, and there are long-range spatial and time correlationfom the behavior of the moments is certainly a better way to
In other words, in this paradigm the systespontaneously proceed. However there is no agreement yet about whether
reaches a critical state without any fine tuning of some conene should use a finite size scaling treatmjefitor more
trol parameter. sophisticated methodésuch as multifractal analysig3]).

Several models have been proposed to mimic this mech&arherefore, at the moment, the identification ofsaipposed
nism, including the sandpile modgl], the abelian sandpile universality class seems problematic. Finally, the central
[4] or the continuous energy modél]. The results available question is the following: what exactly does a knowledge of
are mainly numerical, and only a few rigorous results arethe critical exponents, teach us about the model?
known. Numerical simulations report the following behavior.  An alternative approach to better understand the behavior
Fix an observable, say, measuring some property of an of SOC models can consist of studying the microscopic dy-
avalanche(duration, size, etg. and compute the related namics and inferring information about the macroscopic be-
probability P, (x) at stationarity for a system of characteris- havior from this analysis. A detailed analysis can, at first
tic sizeL. The graph ofP| (x) exhibits a power law behavior sight, seem useless since the conventional wisdom from clas-
over a finite range, with a cutoff corresponding to finite sizesical statistical mechanics is that microscopic “details” are
effects. AsL increases the power law range increases, leadifrelevant, and only structural properties like conservation
ing to the conjecture that a critical state is indeed achieved itaws and symmetries are essential. However, as mentioned
the thermodynamic limit, namely, thd&, (x) behaves like above, the theory of SOC has not yet reached the level of
1/Xx™x as L—«. 7, is called thecritical exponentfor the  understanding of classical critical phenomena. It suffers, in
observablex. There is apparently no control parameter toparticular, from the lack of a thermodynamic formalism, and
tune in order to attain the critical state. Despite the largenotions like Gibbs measures and free energyagniori not
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be used. On the other hand, by having a precise descriptioghere|\| denote the cardinality of a set, and &t be the
of the dynamics of the finite size system, one can expect Boundary ofA, namely, the set of points i\ A at distance
better understanding of the thermodynamic limit, and can from A. Each sitei € A is characterized by its “energy”
decide which Components in the models definition are reall»(i , which is a non_negative real number. CXH:{X|} a
“relevant” and what information the usually computed ek
quantities(like critical exponentsactually give us.

This is the essence of the program we developed in Ref

[9-11. We found that Zhang's model of SOf5] can be otherwise. IfX is stable then one chooses a sit random

fruitfully studied with the tools of hyperbolic dynamical sys- . ” . .
tem theory. Then we were able to extract unexpected results, ith some probability», (i), and adds to it an energy,

o . - : o Where § is set to 1 in this papefexcitation). If a sitei is
establishing, in particular, a formula relating the critical ex- o . ) . .
overcritical or active(X;=E_,), it loses a part of its energy in

ponent of avalanche size to the spectrum of the Lyapunoa\équal parts to its @ neighbors(relaxation. That is, we fix a
exponents. In this paper we develop this point of view, an arametere < [0.1] such that, after relaxation of the site

make a further step toward understanding the dynamic L . ; .
properties of this model and their link to the SOC state. Wzﬁle remaining energy df is X;, while the 21 neighbors

first define the model as a hyperbolic dynamical system Ofeceive the energl(1—€)X;1/2d. Note, therefore, that there

skew-product type. We then define two different time scale s alocal conservation of ener.gyf'se\'/eral nodes are S".“.”"
in this setting: theocal time which is the natural time for aneously active, the local distribution rules are additively

the dynamical system, and tlagalanche timgrelated to the superposed, i.e., th_e time evolu_tion of th? system s synchro-
avalanche duration. We introduce a natural invariant mea?ous‘ _The succession of updatmgs leading an unstable con-
sure to characterize the statistical properties at stationarity'(-:’urfrJltlon o a stable one is called malanchg(a more
and we relate the avalanche observable statistics to the _Lemse_ dde_fln_|t|or_1 of anh a\l/DaIanghe_ W_'"hbe _g|\é(j{)1fhbe)ow
godic local time average. We then discuss the role played b | ere Is dissipation 2“ € Ollm ﬁ”es'lt eh5|t§e_ X _?r\]/e
Lyapunov exponents in the dynamics, and their relation t ways zero energy. As a result, all avalanchesiare. The

the energy transport and the average avalanche observablgg.d't'or? of energy isdiabatic Wh_en an avalanche occurs,
We show that random excitation induces a positiveone waits until it stops before adding a new energy quantum.

Lyapunov exponent, while the relaxation dynamics Corre_Further excitations eventually generate a new avalanche, but,

sponds to negative exponents. Furthermore, we show thatbaecause of the adiabatic rule, each new avalanche starts from
wide part of the spectrurtslowest modesis aséociated with only oneactive site. Note that relaxation depends looal

energy transport in the lattice. In particular, we give boundsCondltlorls while excitation Is conditioned hyiobal con-

on the first negative Lyapunov exponents in terms of theStrI"’"?t‘:'(a.” S|teshar§ qudlesce)zjtlt 'i cofnjetclture?fthallt agm—
energy flux dissipated at the boundaries per unit of time. w&d stale IS reached, independen M, at least for largé,

establish an explicit formula for the transport modes, thesé(alueS%

appear as diffusion modes in a landscape where the metric is _

given by the density of active sites. Except for the first B. Zhang's model as a dynamical system

modes, they differ dramatically from the normal diffusion  Because all avalanches dirite (for finite L), and since
modes that one would obtain by assuming a uniform densityve are not interested in the transients, one can, without loss
of active sites. It was argued in R¢L2] that SOC requires a of generality take all initial energy configurationge M.
wide separation between the excitation and relaxation time| trajectories starting from\ belong to a compact sét.

scales(slow driving. We show in this paper, as a conse-oga” M=B\M. M contains a set of all unstable energy

gtrjlence of c.)(;” trrr:'ore genetral an?IySﬁ,, tha; ttue dyn'?r?ws onfigurations achievable in an avalanche, starting from an
ang provide this separation naturally, and thairdimitely energy configuration in.

slow drivinglimit is actually reached as the size of the sys- " < and calla=(1— €)/2d. Let h be the Heaviside
tem goes to infinity. We then show, using a finite size scalinqunction DéfineH' RN—>{O 1}N su.ch thatH(X) is the vec-
ansatz for the Lyapunov spectrum, that one can relate th{%r{h(xi)}i=1 \. Call X, t'he VeCtoHE }_y . Finally,

obtained sca}ling expo'nent to th'e scaling of q.uantities such %t A be the discrete Laplacian. The dynamics is defined by
avalanche size, duration, density of active sites, etc. the mappingF: B— B such that

configuration of energies. Ld&E. be a real, strictly positive
number, called theritical energy and M =[0,EN. A con-
?'rgurationx is called “stable” iff Xe M and “unstable”

Il. DYNAMICAL SYSTEM DEFINITION AND BASIC F(X) =X+ aA[H(X—X.)-X], 1

PROPERTIES . I . . .
which redistributes the energy of the active sites in equal

A. Definition parts to the neighbors after one relaxation step. NoteRfgt

Zhang's model[5], widely inspired from the Bak-Tang- the identity_if no_site ?s active, i.e. |XeM and that.it is
Wiesenfield precursor modél], was introduced as a pos- Piecewise lineari.e., linear on subdomains, e B). F is a
sible example of a model which “self-organizes” into a (singulay diffusion operator andr a diffusion coefficient.
critical state in the thermodynamic limit, namely without fine
tuning of a control parameter. Its beauty lies in its simplicity.

Let A be ad-dimensional sublattice iZ?, taken as a  Strong deviations from a power law have been observed for
square of edge length for simplicity. Call N=|A]=L%  smallE, in one dimensiorf9].
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It is useful to encode the dynamics of excitation in thewhich is the number of excitations between the end of the
following way. Let3.} be the set of right infinite sequences avalanchd —1 and the beginning of the next avalanche. In
a={a;, ... a,...Lage A, and o be theleft shift over this way, one naturally introduces two time scaledoeal
31, namely,ca=a,as . ... Theelements of ;| are called time tcorresponding to one step of iteration in the dynamics,
excitation sequence3he set} =3} X 3 is thephase space and anavalanche timer; corresponding to the duration of an
of the Zhang's model, and2=(a,X) is a point in Q. avalanchga similar description was used in RE¢L3]).

, : : _ The waiting times are useful for defining the usual ava-
zhang's mogel dynamics are given by a map of skew lanche observables. The numhaf of relaxing sites for a
product typeF: Q0 — (), such that

given configuration is

XEM=>|E()2)=(0'.a,X+ea), 2 Y(X)=|M{iEA, XiBEc}- 9)
X e M=F(X)=(a,F(X)). (3  Theavalanche sizés
A knowledge of an initial energy configuratiod and of a 7(X)
(infinite) sequence of excited sites(of an initial condition s(X)= 2> r(FY(X)), (10)
X) fully determines the evolution. One can gi¥g a prob- =1
ability distribution v corresponding to a random choice of where
excited sites. In Zhang's original model, the excited sites
were chosen at random and independently with uniform 7(X) = inf{F{(X) e M} — 1 (11)

probability. This corresponds to giving, a uniform Ber-
noulli measure Throughout this paper we will often think of
the left Bernoulli shift onX | as represented by the system js the duration of the avalanche that occurs when exciting the

z—Nzmod 1,ze[0,1]. site a, in a stable energy configuratiox. It is zero if one
In the following we will denote the two projections on the drops energy without relaxation.

t=1

first and second coordinates by'(X)=a and 75(X)=X.
The superscriptsi and s meanunstableand stable respec-
tively, and correspond to the expansi@ontraction proper-
ties of the dynamics. LeDFy be the tangent map ¢ at X
and DF}, the tth iterate. As shown belowy!(DFy) is ex-
pansive whereasrS(DFy) induces contraction. In the fol-
lowing we will use the notationX(t)=F{(X) [X(t)
= 75(F(X))]. Furthermore, note that3(DFg)=DFy, and
thatDFy=1, the identity matrix oveRRN, if X e M.

Consider a poinK e €. Its trajectory is intermittent, com-
posed of bursts of excitation of the sitag,a,, ...a,, for
those timest such thatX(t) e M, followed by relaxation
periods whenX(t) e M. Define the following hierarchy of
waiting times

Yo(X)=0, (4)

oi(X)= inf {X(t)eM}, i=1 (5)
>yi-1

yi(X)=inf{X(t)e M}, =1 (6)

>0

Fori=1, ;i(X) [7(X)] is the starting timgending time
of the ith avalanche occurring during the evolution xf
Therefore, theavalanche duratiorof the ith avalanche is

7i(X)=%(X) = 0i(X). (7)
In the same way, one defines
wi(X)=0(X) = % -1(X), ®)

The structure of an avalanche can be encoded by the se-
quence of active sitesA(X)={A(X)}1=1=.x Where
A(X)={j e AIX;(t)=E}. [Note thatA,(X) is nonempty
and equal to{a,} iff X+e, is active] Correspondingly,
there exists a partitidnof = 1 X M into domainsP; , =[i]

X M, ., where[i] is the set of sequencesXy, having a first
digit i, such that for any energy configuratidhe M; \ the
excitation of sitei leads to the same avalancfthe same
sites relax at the same timeJnder some moderate assump-
tions (see Ref.[11]), this allows us to define a symbolic
coding for the avalanche and a transition graph, giving the
transition rules between successives avalanches, and to show
that the dynamical system admits a unique, fractal, invariant
set. The boundary of the domaifs constitutes theingu-
larity setof F, calledS. This is the set of points wheifé is

not continuous.

C. Stationary state and probability of avalanche observables

Let ,&,_ be an invariant measure for the dynamical system
{Q,F}, where L refers to the lattice size, namely,
wL (F71(A)= 1 (A), where AeQ is a measurable set.
Since() has a product structure where the unstable foliation
is always transverse to the stable one, and since the dynami-
cal system is a skew produgi, = v, X u , wherey, is the
induced measure on the unstable directioexwitationmea-
sure, andu, is the induced measure @or measure on the
energyconfigurations. For simplicity we will assume that

2This partition is induced by the partition @ into domains of
continuity forF [11].
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is a Bernoulli measure, namely, that the successive excited [/, (PJ)/u, (M)]. In this definition we include the ava-
sites are choserindependentlywith fixed rates. Once |anches of size zergexcitation without relaxation How-
we have fixed the distribution of excitation, we are interesteckyer, it is more natural from the SOC point of view to ex-
in the possiblex, measures. Of special physical import- cjude this case. We therefore defiRg(s) as the probability
ance are the measures obtained by iterating the Lebesgég having an avalanche of sizestrictly larger than ¢
measure u o, (see footnote B on M, that is,

Iimnﬂw(lln)E{‘;OllA:i(va Kien)- When the excitation mea- def,&L(Ps)

surey is itself the Lebesgue measure [d@h1] (correspond- P.sl= o’ s=1, (13
ing to choosing the excited sites with uniform probabijlity

the measure obtained is called the Sinai-Ruelle-Bowen def . . . .
(SRB) measure. More generally, we will call thgondi- wherep, =Projs(X)=1,X e M] is the probability ofiniti-

tional) SRB measure Iimﬂoc(lln)EP:_(}r:i(VLXMLeb)u for a ating an avalanche. The average with respecPips], de-

) _ ; k .n further on i
fixed v . This is a natural invariant measure from the physi- oted further on by ). , is

cal point of viewl, sinccle it gives the ensemble average with dor &
respect to typical initial energy configurations. _

It is common in SOC literature to assume ergodicity. In (P(s))L= 521 P.lsly(s), (14)
our setting, the physically relevant ergodic property is
equivalent to assuming that the SRB measure is uniquevhere is some real function, ang is the maximal value
Proving the ergodicity in Zhang’s model is clearly a difficult that the observablgcan have on a lattice of size(note that
task, which is beyond the scope of this paper. However, wg} also depends ok, €, andd, but is boundedif L<c).
note that this point was discussed in a previous pgb&l,  The same definition holds for any other avalanche observ-
where strong mathematical arguments in favor of this wereble. From the ergodic theorem
given. Actually, ergodicity was proved, but restricted to the
one-dimensional model and to sorgg interval. A general 10
proof is under construction, and will be published elsewhere ((s))L= lim 5 > (s, (19
[14]. On physical grounds, note that the failure of ergodicity n—e 111
would lead to a stationary state depending on initial condi- h s the si f theith lanch ing in th
tions. This would contradict the implicit SOC assumptionW .ere Si 15 the S|ze.o _el avajanche occuring ih the
that the stationary state is unique. In the following, we will trajectory of a generic poirX.

therefore assume that ergodicity holds and thatis the One has

uniqgue SRB measure. This implies, in particular, an almost- N

sure equality between the ensemble average and the time pL:/}'L[Ui'\lzl{alzirXiE[Ec_llEc[}]:E pL(i),
average: if¢ is some observabléa function Q—R, inte- i=1

grable with respect t@, ), (16)
_ def 1T o o def where
B lim 73 GE )= [ 60di =Bl 9] d
T t=1 Q . ef .
12 PV = (DX c[E~1EL (7

that the probabilitiep, (i) depend a priorion i even if the
excitation measure is uniform. In this case, however, Eq.
(16) reduces to

tion X. Here and in the following, L will denote the time
average, whilee [ ] will be an ensemble average on a lat-

tice of sizeL.
From a dynamical system point of vienyL is the natural 1 N
object to deal with. However, in the SOC literature one is PL=y > wfXie[Ec—1EJ}. (18
=1

more interested in the probability distribution of some ava-

lanche observable and its scaling properties in the thermody- | N

namic limit. Fix an avalanche observable, saall Ps the ~ Fix X andT, calln(T,X) the number otompleteavalanches
union of domainsP; , such that avalanches corresponding tooccurring until local timeT for the initial conditionX. Ob-
each domairP; , have the same size Then the probability  yjously, n(T,X)—« as T—w®, ¥X. Then, from the ergo-
of having an avalanche of siz by excitation of astable  gic theorem,

configuration, is Prds(X)=s|X e P]=[ (P! (P)]

“4In view of the expected critical behavior &s—, one usually

30r any absolutely continuous measure, which corresponds to sevrites a scaling fornP, (s) = f, (s)/s™s wheref  (s) is a cutoff term
lecting the initial energy configuration with a probability distribu- accounting for finite size effects on large scaleg(s) is not de-
tion having a density. fined fors=0 unless we assume very special propertiesf {¢s).

016133-4



LYAPUNOV EXPONENTS AND TRANSPORT IN THE . ..

i n(T,X) r
pL=lim == (19
One can decomposg as T=3"TX 7+ 5000, 1+ K(X),

where K(X) is some residual time, flnlte, whatevérand

X [K(X) is bounded by the largest avalanche durdtion
Note thatr(w;) stands forr;(X) [w;(X)], but we removed

PHYSICAL REVIEW E 64 016133

In particular,

rL=pu(sh (23

Finally we define the probability that a sites active(often
called thedensity of active sitei the literaturé):

def
pL(i)=pu [X=E] (24)

theX dependence in order to simplify the notations. Then, as

T goes to infinity,

n(T,X) n(T,X)
T a0 X
> ont 2
i=1 i=1
n(T,X)
NT.X) n(T.%) 2 o
T amX TR T
2 o 2w
i=1 i=1
Call
 def ln(T)A()
o= lim = 2 o= p (M) (20)

T—ow

the probability of dropping energy in the system at a given

time (the equality holds fop, for almost everyX from the
ergodic theorem w,_(l) Proja;=i Xe./\/l]—vL(l)wL is

the probability of dropping energy on siteat a given time,
and is called thalriving ratein the literaturg 15]. One has

and

1 N
pl=N 2 puli)- (25

pi’ is believed to act as an order parameter in Zhang's
model.

IIl. DYNAMICAL PROPERTIES AND LYAPUNOV
EXPONENTS

A. Jacobian matrix and Lyapunov exponents

Due to the piecewise affine structure of the nfgpthe
Jacobian matribDFy plays a central role in Zhang's model,
since it characterizes the energy transport. Indeed, the entry
DFtX’iJ- is the ratio of energy flowing from siteto sitei in t
times steps for the initial conditiorX. Define Z,(X(t))
=H(Xy(t) —E.). This is a random variable, taking a value 0
if X, (t) is stable, and a value 1 otherwise, whose probability
distribution is inducedat stationarity by the invariant mea-
sure . . More precisely, PratZ,(X(t))=1]=p. (k). Let
Z(X)={Z(X)}r_,, and callS(X)=AZ(X)! [equivalently
S(X) is the matrix of entriesS;(X)=4;;Z;(X)]. Sis the
“toppling” operator of Zhang's model. The Jacobian matrix
s DFy=1+ aS(X), while DF} is given by

:1_;|_ _ /-LL(M) (21) t
T T DFY=1+a > SX(t)+a® > S(X(11)SX(t)
tp=1 t=t;>tg=>1
where(7), is theaverage avalanche duration
There exists an important relation linking the avalanche +.t+af S(X(t,_1))
averagegaverage with respect tB,) to the local time av- =t >t o >tp=1
erage(average with respect tn). Let :Q2—R be some X S(X(t,_5))- - - SX(tg))+ - - - + a'S(X(1))
observablesuch that¢(X)=0 wheneverX e M. A related
XS(X(t—1))---S(X(1)). (26)

avalanche observable can be defined by summing the values

that ¢ takes in one avalanche. That is, calll()A()

_Ey.(x)(x)d,()”((t))_ [An important example is Whe'd’(f()

=r(X), the number of active sites in one step. THgiX) is

the size of theith avalanche in the trajectory of.] One
obtains

nT.X)  %(X)
$=lim = 2 > X)),
T~>00 =1 = o’,(X)
which yields
EL:pL<f>L- (22

Therefore, the generic terfisay of orderr) is a “propaga-
tor” transmitting the energy im times steps. Note that this
formula is exact. It calls for the following remarks.

(i) The mapsS(X) do not commute, and they depend on
the state. This is a key difference from Dhar’s model, since it
induces anon-Abelianstructure and a “toppling” operator
dependingnot only on the site, but also on the whole energy
configuration In particular, the propagatas not a mere
polynomial of the Laplacian

SWe will keep this terminology throughout this paper, though
pL(i) is not, strictly speaking, a density sinEé‘:lpL(i)qu.

016133-5



B. CESSAC, PH. BLANCHARD, AND T. KRIGER PHYSICAL REVIEW E64 016133

(ii) The evolution dependa priori on the whole trajec- a piecewise translation in phase space, and the uniform mea-
tory, and therefore the strong memory effects expected in aure is preserveldt]. Hence all Lyapunov exponents are zero

critical phenomenon can be treated from E2f). [19]. There is therefore clearly atructural differencebe-
If one defines the excitation times for a given trajectorytween the dynamics of Zhang-type models and sandpiles. At
by first sight this observation seems to ruin the hope of classi-
fying Zhang-type models and sandpile models in the same
n(X)=inf {X(t)eM}, (27 “universality class.” However, in this paper we show that
t> 1 1(X) the hyperbolicity of Zhang's model is lost in the thermody-

namic limit. That is, some of the Lyapunov exponents go to
with vg=yo=1, the energy configuration at time for an  zero asL—, with a polynomial ratgexponentr, in Sec.
initial condition X is Il closely related to SOC critical exponents. It might there-
fore well be that these two classes of model share the same
m(T X) . SOC critical exponents in the thermodynamic limit, though
X(T)= D[:>T(. X+ 2 DFtX_ viX), € (29 their dynamics are still of different natures, even in this limit.
i=1 Due to the skew product structure, the tangent map at any
point X admits a natural spliting DF=(7"(DFy),
7(DFg)), where the one-dimensional map(DFy) is ex-
pansive. Indeed, the average expansion rate is given by

(X))’

wherem(T,X) is the number of excitations on a time inter-

val of lengthT for the initial conditionX. The first term
corresponds to a redistribution of the initial energy configu-
ration, and the second one to a redistribution of the energy 1

quantums=1 dropped in the system at timeg(X). Since AL(0)= lim ?Iog[det(qr“(DlA:)TA())]=w,_ log(N), (29
the equilibrium average is assumed to be independent of the Toe

initial condition, the first term has to decay to zerotas,
\;\girna;iriic%yergaei:"tc)ﬁlrjr;sjpondlng to the characteristic relaxsince deﬁw”(DlA:)Tz)):NEingiX)“’i(x). Therefore, sinces, #0,

It is therefore important to understand well ttspectral there is apositive Lyapunov exponeint the dynamics. Note
properties of thdF'X in the infinite time limit. WereS(X) that this |s“ due t_o”the exmt_atlon rule, and that it _S|mply re-
to be the Laplace operator, then were the spectrumix flects the ““chaotic” properties of the Berpoulh shift.
to be composed of Fourier modes, and the relaxation time to A more important issue concerns’ (DFx)=DFy. The
equilibrium would be the slowest mode. However, the mereOseledec theoreffi6] asserts that under mild conditions on
presence of a singular ter@(X) certainly makes a big dif- DFx there exists a hierarchy of Lyapunov exponent$1)
ference. SinceS depends orX one clearly has to study the >---A_(N), which are almost surely constant with respect
decay rates averaged on a f(ipical) trajectory, or equiva- to the Lebesgue measure, and a hierarchy of nested sub-
lently one has to compute the ensemble average. In thispacegOseledec splitting
view, the law of the stochastic procegZ(X(t))} s
(namely, the density of active sites and correlations at all RN=V,(X)DVy(X) D Vy(X)
times certainly plays a role.

The numbers characterizing the dedaxpansion rates . - )
of the norm of a small pertubation in the trajectory’s tangenid®Pending onX, S_UCh_ that the norm of a perturbation
space of a poinK under the action of the infinite product € Yi(X)~Vi+1(X) is given by
matrix DF'X, t—o, are theLyapunov exponent3hey are ~ _
real numbers, well defined under some moderate assump- IDF-v||=C(X,t)er Oy, (30

tions onDF X (see Ref[16]), and are almost surely indepen-

dent of X. Furthermore they are also independent of thewhere lim_...(11)logC(X,t)=0 almost surely; that is,
norm (in finite dimension. N (i) is the exponential rate of variation dfiv||. Define
As shown in Ref[11] and widely discussed in this paper, M(X,t)=DF}-DF} and A=lim,_.. M(X,t)¥2 (the Osele-
all the Lyapunov exponents are different from zero,fioite  gec multiplicative ergodic theorem insures that this limit ex-
L (weak hyperbolicity. One remarkable consequence is thatists aimost surely, and is a constarithen the Lyapunov
the asymptotic dynamics lie on a fractal attractor, and thagyponents are the logarithm of the eigenvalues oM (X, t)
the Lyapunov spectrum is closely related to tleeal) fractal being symmetric, it admits an orthogonal ba{s&iﬁx,t)}-’\‘_l,
properties of the invariant set through the Kaplan-Ydrké| and eigenvalues  ;(X.1) such that ?\IL_(i)

and Ledrappier-Young formu_la{_s.8_,1]]. At this point a re- = lim_...(1/20)log(x;(X,1)). Furthermore, eact(X,t) con-
mark is necessary. Hyperbolicity is clearly a particular fea- . Y .
ture of Zhang's model, and of similar models where the?er9es exponentially to a vectgf(X) in k¥, depending on

amount of redistributed energy from a critical sitdepends X [20]. vi(X)'s therefore constitutes a basis for the Oseledec
on its energyX; . Conversely, in models like that of BTW or SPlitting. We call thes®©seledec modefer the trajectory of

Dhar, the amount of transferred energy is a constant. As X. They can be numerically obtained from the QR decom-
direct consequence, in these models, the dynamics is simpyosition used in the computation of the Lyapunov spectrum

016133-6



LYAPUNOV EXPONENTS AND TRANSPORT IN THE . . . PHYSICAL REVIEW E 64 016133

(see Ref[17]). It was shown in Ref[11] that\ (i) are all  of the initial perturbation of a ratio &/for this mode. There-
negative for finiteL, namely, all vectors iR\ are asymp- fore, a crossover point can be estimated by
totically contracted. (i)~1 (34)
From this discussion, one expects a close connection be- XLl '
tween the Lyapunov spectrum and the energy transport ilVe will call Oseledec modes corresponding 1q (i)
Zhang's model. In particular, the following formula can be <\ (i;) [AL(i)>\.(i.)] slow (fasb.
proved[11]:
1. Bounds on the first negative Lyapunov exponent
N
- — (s)t We give a bound on the first Lyapunov exponent related
M (i)=log(e)(1—w )7——=p.log(e)(s) . (31 9 yap P A
2’1 L(D)=leg(e) L)<T>|_ plog(e) s (31 to the energy dissipation at the boundaries. @q‘lf’t(t,x)
def
This relates the Lyapunov spectrum, which charactefizes zl_gi’\‘le F - Since the energy is locally conserved,
c?ltpr?pelrtles oftt_hem(;rct)ﬁcopmdynam_lcs, tf[) the SV?Ia?ﬁhte <I>J°“‘(t,)A() is the ratio of the initial energ¥; given by the
statistical properties of themacroscopicsystem. Note tha sitej to the boundary’A in t time steps. In other words, the
the exponenk (i) gives the contraction rate in the direction

i . ime is ®°U(t X)X
v;(X) versus thdocal time One can also define the average energy coming fromx; and lost at timet is ©;7(t, X)X; .

. N The following holds.
contractionper avalanchey, (i), given from Eq.(22) by Proposition 1 The largest negative Lyapunov exponent

(1), A (D) N (1) admits the following bounds:
xL()=—=A\. ()= 0 (32) 1 i
1~o L 0> lim ~ log[ 1~ min(@¢"(t,X))]
t i

— 0

Then the sum of_’s, giving the average volume contraction

per avalancheis related to the average avalanche size by 1 oUte O
;)\L(l)ztlml T Iog[l—mjaxtI)j (t,X)]. (35

N
;1 xi(i)=log(e)(s). . (33 This is interpreted as follows. Als— o, CI)}““(t,)A()—>1, Vi,

VX, since, eventually, all the initial energy coming frofris
Note that(s)_ corresponds to the total energy transportiost at the boundaries. The limit lim..(1/t)log[1
within one avalanche, and is believed to be rela}tgd to the_ q)j)ut(t)"()] gives the exponential rate of convergence of
total response functiofl5]. Our formula shows that it is also

outry vy i ;
equal to the volume contraction in phase space produced oRi (LX) t© 1. In other words, it gives the exponential de-
average by one avalanche. crease for the ratio of the initial energy still in the lattice at a

given time. The maximal negative Lyapunov exponent is
bounded by the extremal dissipation rates. One sees, there-

B. Oseledec modes fore, that the contraction in the principal Oseledec mode is

To each negative Lyapunov exponent (i), i mainly due to the dissipation at the boundaries. We shall see
=1,... N, is associated a characteristic timg (i) later that\| (1) is essentially related to the so-calldi$si-
=[x (i)] 2, the time for of a perturbation in the Oseledec pation rate
directioni to vanish. This therefore define a hierarchy Proof. It is easy to show that there exists a timede-

pending onE., €, andd such that, whatever the value Xf
each site in the lattice has relaxed at least once after this
Itime, and therefore all sites of the boundary have dissipated
energy. At timet the energy coming from sitewith initial

tL(1)>t (2)>-- -t (N).

Note that there is no contradiction with the expected critica

behavior in the thermodynamic limit, since hs-~ there 97 . ) .

are an infinite number of characteristic time scales. erlllergy X;, and red's”'b“teij Into th?\‘ Iatt|ce,. IS
From a physical point of view a perturbation can be2i=:1DFxjX;. Fort=ts, ®7"(t,X)>0, and={_,DF} ; is

viewed as a small modification of the initial energy land- bounded away from 1. SindaF;z is a matrix with positive

scapeX. It can be localizedfor example one site perturbed entries,

or spread. The attenuation is due to two distincts effects:

N
tion th h the latti d dissipati t the bound- A
propagation throug e lattuce, an ISsIpation a € poun min E DF;( I]) —1_ maXCI)]om(t,X)$p(DF§<)
i i=1 ’ j

aries.
Note that according to the Oseledec mode under consid- '
eration, the contraction can be d{@ averaggto the effect N
of one avalanchéf t, (i) is small compared to the average =ma 2 DF} ]
oo\i= ’

avalanche sizg or to the cumulative effect of many ava- ]

lancheslif t, (i) is largd. The coefficienty (i) [Eq. (32)] o out. O
gives the average contraction per avalanche foritheDs- - 1—m_|n (%)
eledec mode. Therefore the numbeg Xf) gives an esti- .
mate of the number of avalanches needed to have a reduction <1, (36)

016133-7



B. CESSAC, PH. BLANCHARD, AND T. KRGER

wherep(DF}) is the spectral radius dbF, .

PHYSICAL REVIEW E64 016133
The largest negative Lyapunov exponent is given by

0 : . ;
-0.05 —‘\\\ |
1 t X ;]
AL(1)=lim = log(|DFiL), 37 o
t—oo . ’§)<( +
where|| ||, is the L, norm. In Eq.(37) the limit does not 015 ¢ ]
depend orX, providedX belongs to the support gf, . One ozl 3 |
hasp(DF})<|IDF}||,, and, therefore, ' %
1 -0.25 f;;( J
AL(1)=lim + logl 1 —max ®P(t,%)]. o x
t—o ] 083 ! L L 1X
0 50 100 150 200 250
Furthermore, all norms being equivalent in finite dimen- i
sions, Eq.(37) also holds for the.; norm where FIG. 1. Lyapunov spectrum foe=0.1 and 107, L=15, and
N E.=2.2.
ijzzl DF il X
IDFY/l,=sup——x—. k(X)=2de— >, &, ieAX), (39)
X it
> 1l
j=1
DF;'”’S being positive, the supremum is certainly achieve W
for positive X; values. Therefore,

dThereui denotes the set of sites ik at distance 1 from.

here are alsdl—n.(X) neutral eigenvalues associated with
the eigenvectors,, i e A,(X).
N
,Zl [1-®P(t,X)]X;
IDFX/l,=sup
X1 ,

The eigenvectorg; produce arbitrarily large contraction

as e—0. In particular, in the original Zhang model, where
€=0, they correspond t&ernel modes, which have eigen-
N
X
121 :

values 0. Note that, in this case, the dimension of the kernel
of the product tangent mapF} increases with. However,
it is strictly lower thanN ast—co [11]. It is easy to check
1 N that these modes have zero energy, except if some @& 'the
=1-inf —— 21 q)?ut(t,)“()xj correspond to sites neighboring the boundary. This occurs
X E X, j
=1

with small (but nonzerp probability. These modes act as
directions where a single local time step is sufficient to re-

A duce the initial perturbation by a factey with a small varia-
<1-inf min(CDf“t(t,X)) tion of the total energy on average. They correspond dynami-

X cally to directions transverse to the attractor, and their
A contraction corresponds to a fast convergence onto the attrac-
The limit lim;_ Iog[l—minj(QJf”‘(t,X))] is a constant
for any X in support ofu, . Hence
AM(D<Iim

tor. For this reason we call thestabilizing modesin the
1 ; out 4 vy
n log[ 1 —min(®{™(t,X))]

t—oo j

Lyapunov spectrum they can be identified because the cor-
responding Lyapunov exponents go toe as e—0, while

the other part of the spectrum weakly depends dgee Fig.
1).

2. Stabilizing modes

The contraction in the principal Oseledec mdttee first
negative Lyapunov exponenis mainly due to the dissipa-

3. Transport operator
tion at the boundaries. On the other hand, it is possible t

It is usually not possible to give an explicit formula for
the whole Lyapunov spectrum, except in some specific cases
21]. Here we propose a mean-field ansatz which gives good
o . . esults for the slowest modes, and has a nice interpretation in
have alarge contraction in one local time step without reaChferms of random walk. It is based on the following observa-
ing the boundaries. Indeed, the tangent mallrixx has the i s

Igltlig‘;]"ing property, which can be checked by direct compu- - thg | yapunov exponents are the eigenvalues of the ma-
Proposition 2 Let A=A (X)&A(X), where A(X) "X éZtEL[At]fEL[“m““(PFX'DFX)M]' Since the ma-
={ieAIXi=XJ, A (X)={ieA|X;<Xs), and nc(X) trix DFy-DFy is bounded inL, norm, VX, Vt, from the
=NA(X); thenDFy hasn,(X) eigenvalues correspond-

ing to the eigenvectors

Lebesgue theorem one has=lim, .. E,[(DF%-DF})¥2].
On the other hand, the matrix
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L(t)=E [DF}] (39 small perturbation has essentially no variation during one
step of an avalanche. In other words, the slowest Oseledec
characterizes théensemblg average energy transport in  Modes are not sensitive to the fast change local time
time Steps_ However, the connection betwéén) andA is SteD of the individual matl’lceSDFX [the fluctuations of
loose. the Z;(X(t))'s] but, rather, to average variations on the
Were the transport to be normal, namely, wBrg, to be ~ characteristic time scalg (i) =1/, (i), which is quite a bit
independent oK and of the formDFy =1+ yA, wherey is longer than a local time step. This suggests that one should
some constant, thef(t) would be equal tol(+ yA)'. In this ~ consider the projection of the matricdsFy,'s on the
case, £(t) would be constant and symmetric. Then slow Oseledec space as independent. This leads to propose

L i E [DFg]=I1+aAp | as a one-step transport operator. Note
t ty1/2t — L X L
EL[(DFy-DF) ™" ]=1+yA and A=1+yA. In this case hat we obtain the same result by assuming B (t))'s
the Lyapunov exponents would be eigenvalues of a one-stefreindependentindeed, in this case

transport operatof£ =1+ yA (Fourier modes
More generally, thénaive) hope would be that of finding Prodz;  (X(t,_1)=1,... Z; (X(t1))=1.Z;(X(to))=1]
an effective transport operatat such thatZ(t)=L", and . . .
whose singular value®r eigenvalues ifC is self-adjoined =pL(ir—1) .. .plivp ()
would give the Lyapunov spectrum. However, thera igri-
ori no hope of finding such an operator, in general. Note, inthen £(t)==!_,CK(Ap 1)*= (1 + adp .
particular, that the assumption of independence of the matri- Thjs approximation gives correct results, provided that
cesDFy(y), the first step toward a mean-field approach, ispne multiplies the density of active sites by 2. This approxi-
not a sufficient condition. Since, in this casg,[DFy]  mation neglects an important effect. Provid&g>e/(1
=E,[DFy]', one is led to propos€=E [DFy] as a one- —¢), a sitecannot relax for two successive time st¢ps],
step operator. However, one needs further conditions to inand therefore it relaxes at most only half of the time during
sure that the singular values &f give the Lyapunov expo- one avalanche. This means, in particular, that the random
nents (see, for example, Refs[21,22). It appears, VvariablesZ;(X(t)),Z;(X(t+1)) arenotindependentnd that
nevertheless, that in Zhang's model an effective transpoithe probability that one site relaxes at time 1 depends on
operator can be found from a mean-field treatment whictwhat happened at time In addition, two neighboring sites
well approximates thslowest modes cannot bg si.multanequsly active. In a certain sense, the lat-
The first obstacle toward a mean-field approach lies in théice is “blinking:” during one avalanche all active sites are
independence assumption. The maifit) is a sum of time at pairwise distanc€ll]. This, therefore, introduces strong

correlations terms of the form correlations betweed (X(t)) andZ(X(t+1)).
However, one can circumvent the problem by reparam-
E[S(X(t, _1)SOX(t,_2))- - - S(X(to))] etrizing the_time and consiqlering the evolution of the process
every two times stepsEquivalently, one replaces the sto-
whose entry {,j) writes chastic proces$Z(X())};; by a new processY (t')};,~,
={Z(X(t)),Z(X(t+1))},7, whose component¥,(t) take
Zi, ""ir—lAi'ir—l .. .Aiz'ilAi” Prol{Zirfl(X(tr,l)) values in{0,1}?, where the event (1,1) has zero probability
and wherd’ =t/2. One can then encode thg(t’) values by
=1,... Z (X(t))=1Z;(X(tp))=1] 0—(0,0) (no relaxation at timest,t+1) and 1

—(0,1),(1,0) (relaxation at timet or at timet+1). This
leads to the definition of a new “density of active sites”
Clearly, the nonvanishing terms in this sum are those correp| (i) =Prof Y;(t')=1]=Prof Z;(X(t))=1 or Z;(X(t+1))
sponding to a path fromto i, where each intermediate site =1]. Since the eventdZ;(X(t)=1)} and {Z;(X(t)+1)
has been active at least once with a nonzero probability. A=1} are disjoints, we havep| (i)=Prod Z(X(t))=1]
simple glance at this formula shows thatpriori all time +ProfZ(X(t+1))=1]=2p,(i). Assuming now that the
correlation functions of the joint probability of active sites vy, (t')’s are independent, and consideringi) as the effec-
Profz; | (X(t,-1))=1, ... Zi (X(t))=1.Z;(X(to)) = 1] tive density of active sites, one obtains an effective transport
have to be considered. operator:
However, Zhang’s model, as a hyperbolic dynamical sys-
tem, has an exponential correlation de¢y finite L). The L=1+2alp,l (40)

largest correlation decay rate is given by the entropycgjiing 4, the singular values of, our mean-field ansatz

o, log(N). This decay rate is quite a bit faster than the charsuggests that the slowest Lyapunov modes are given by
acteristic times related to the slow modésr example, the

correlation decay rate of a site with itself is abeud.025 for AL(i)=log(y;). (41)

Ec=2.2, e=0.1, andL =20, corresponding roughly to the \4te that this operator is self-adjoined for the mefsid,

320th exponent in the spectrum, while the slowest Lyapunoy,q that the corresponding matrix can be made symmetric by
exponent value is—0.000209871). More generally, we the variable changg, 2

show in Sec. IV thah (1)~ w_ /LY to be compared to the  Tq check the validity of this ansatz, we first computed the
decay rataw, log(N). On the other hand, for slow modes, a density of active sites on a 2®0 lattice, and numerically
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FIG. 2. Lyapunov spectrum, logarithm of tifesingular values,
and normal diffusion modes fd.=2.2, e=0.1, andL = 20. (a) 80
first modes.(b) Full spectra drawn with lines in order to see the
shape better.

found they;’s from these datd.At the same time we com-

PHYSICAL REVIEW E64 016133

.

where the Laplacian modes are parametrized by the quantum
numbersn=(n,), k=1, ... d, sorted such that the corre-
sponding eigenvalues are decreasiiagd i refers to the
placement of the exponent in this sequende Fig. 2, we
also plot the diffusion eigenvalues of E42). The computed
Lyapunov exponents are different from these values except
for the largest ones. This approximation is therefore too
crude, and gives a wrong spectrum. Note in particular that
the shapeof the spectrum differs, namely, the discrepancy
cannot be corrected by a mere multiplicationpdf by some
factor. Since the Lyapunov exponents contain all the relevant
information about the dynamics at stationarity, our conclu-
sion is that the nonhomogeneity pf(i) plays a key role in
computing dynamical quantities, and implies, unfortunately,
that the zeroth order “mean-field” approaches, which ap-
proximate the density of active sites as a constant, lead to
incorrect estimates for finite size when dealing with interme-
diate time scales. On the other hand, this should lead to
correct results when dealing with the longest time scales,
since the first modes are well approximated by a transport
operator where (i) is considered as uniform.

In the literature one often encountergagparentcontra-
diction (see, for example, the original paper by Zhdng
and a subsequent analysis by Pietronet@l. [24]). One
assumes the transfer of energy on large time scales to be
normal diffusion, while at the same time an anomalous dif-
fusion exponenk# 2 is computed. It was certainly clear in
the spirit of these authors that one has to distinguish the
average transport on many avalanchisg time scales
from the average transport within one avalan¢tiearacter-
ized byz). Our results on the Lyapunov spectrum makes this

d

1+2apl” >
k=1

A= Iog| co{% ] , (42

puted the Lyapunov spectrum. A plot of the two curves isgstinction quantitative. We show that transport on the long-

drawn in Fig. 2. One finds a very good agreement over st time scales is normal with a good approximation, while

large part of the spectrum, and the discrepancy increasqfe average transport withione avalanche, on time scales

toward small times scale, as expected. corresponding roughly to the crossover point(i.), is
clearly anomalous.

4. Role of the spatial variations in the density of active sites

It is usually assumed in the SOC literature, when dealing
with the model’s spatial properties, that only the density of
active sites, and more precisely, its lattice averaffe, has The operatorC is the Laplace-Beltrami operator associ-
to be taken into account. One therefore neglects the spatiated with random diffusion in a “medium” or a landscape
dependence op, . In our approach this would lead to an that is not flat corresponding to the metrig=p I, wherel
effective transport operator+2ap A, corresponding to is the identity matrix orR". This has a nice interpretation in
normal transport. In this case, the slowest Oseledec moddbe so-called random walk pictufeAssume, for a moment,
would simply be the eigenmodes of the Laplacian with zerdhat the energy of a site is composed (bydivisible energy
boundaries conditions ofiA, and the Lyapunov exponents quantay that can be made arbitrarily smdthis is way to
would then correspond to the normal diffusion modes “map” Zhang's model to a sandpileAssume that we are in
the stationary regime, and that at an initial time we drop a
grain in some place and study its motion. At each time step
where it is involved in a relaxation process, this grain makes

5. Random walk picture

5We were not able to go beyord= 20 in the Lyapunov spectrum
computation. We used a version of the Eckmann-Ruelle algorithm____
[17] revisited by Von Bremmeret al. [23]. Nevertheless, we
needed two weeks of computation on a Pentium Il 300 for the case ‘B.C. is very grateful to P. Grassherger and D. Dhar for illumi-
L =20, with a relative accuracy of 16. nating discussions on this point in Trieste.
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a jump at random in one of thed2directions in the lattice. tjon for the probabilityP(i,t) that a grain is at placeat time
From this point of view, the stochastic dynamics of the graint pefore it leaves the lattic®(-,t+1)=[1+aAp ]P(-,t)

is driven by the underlying dynamics of E€l). If we as- =[]+ aAp,]'P(-,1), and one recovers the operator obtained
sume that the evolution is Markoviathe probability of  above when assuming that tBg(t)’s were independent. In-
jumping fromi to some nearest neighbpdepends only on  deed, the independence assumption ofZf(¢)’s is equiva-
the state of at timet, and is given by a transition rai; lent to the Markovian assumption in the random walk pic-
=ap (i), while the probability of staying at the same place ture. The probability of jumping for a grain at tintedepends

is 1—p (i)(1—€) [remember that only an amount= (1 a priori on its whole past via a Chapman-Kolmogorov equa-
—¢€)/2d of the energy is transferred to the neighbors when aion, whose transfer matrix is a sum of terms containing con-
site relaxe$ From this consideration, one obtains the equa-ditional probabilities

Profz;  (X(t,—1))=1|Z; (X(t,—2)=1,... Z; (X(t1))=1.Z;(X(tg))=1]

_Profizi | (X(t-1))=1Z; _(X(t—2)=1,... Zi, (X(t))=1.Z;(X(to))=1]
- ProfZ; (X(t,_p)=1,... Z; (X(t)=1Z;(X(to))=1]

=Profz;  (X(t,-1))=1],

where the last equality holds when tEg(t)’s are indepen- at stationarity, equal to the incoming flithe probability of
dent. In this caseW;; =a ProfZ;(X(t))=1]=ap.(i) for ~ adding a grain in the lattigenamely
thej nearest neighbors of

However, we saw above that the process is not strictly _ _
Markovian, since a jump from a given site cannot take place o =2a 2 pl()X(). (44)
at two successive time steps. In other words, the probability Jevon
of a jumpi—| depends on the state oét timet andat time
t—1. The system has some memday least two time steps
However, defining the random variabl&g(t)’s, as above,

The complete equation for the energy at stationarity is

and assuming them to be independent, amounts to rendering 2aA[p X ]+ o (i)=0, (45)
the random walk Markovian by a suitable reparametrization
of the process, and gives a transfer equation with zero boundaries conditions and with constra##).

In this equation one distinguishesl@al transport term,
. and a source term which depends orglabal constraint.
P(- t+1)=[1+2aAp JP(-,)=L'P(-,1)  (43)  When the excitation is uniform, Eq(45 reduces to
Alp X 1+ (o 2aL%)=0.
The difficulty in solving this equation is that it deals with
tpe productp, X, . On the other hand, it is known in the

Eflterature thatX, converges to a uniform energy distribution
over the lattice at — o« [25]. Assume now that we can write

X, as

Therefore, the operatat characterizing the decay of a small
perturbation can also be interpreted as the transfer matrix
a random walk, in a medium where the diffusion rate de
pends on the location.

6. Density of active sites and average energy _
flowing towards the boundaries X =Xo+f(L), (46)

Equation (43) characterizes the energy transport in the
lattice, but does not take into account the source tertdli-
tion of a grain required to reach stationarity. Indeed, each
time a grain exits the lattice, one must add another grain at

random place, with probability;L(i) ; this is a source term.
Call P, the equilibrium state of the random walk, avi¢b/\)

- . 8The cautious reader has noted that this equation is not dimension-
the. _Set of Sltes.at dIStafn(,:e 1 from the b_oundgry. T,he, prObéllly correct, since no energy term appears on the left-hand side. One
ability for a grain to exit is 22 cy(mpL()PL(i). ThiS IS ghoud indeed multiply the left-hand side I# the input energy

obviously proportional to the outgoing energy flux, which is, quantum, which is set to 1 throughout this paper.

where||f(L)|| goes to zero ak—c, and whereX, is spa-

tially uniform, i.e.,Xo(i)=const=;L. At zeroth order, for
gL one obtains the equation
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First order approximation  x

FIG. 3. Plot of the density of active sites and solution of Eq.

(47) for E;=2.2, €=0.1, andL = 20.

ApL (47)

L
+7
2al XL

where Ld;L=Et0t, the average total energy in the lattice.
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The solution of this equation can easily be found by decom-
position on the eigenmodes of the Laplacian. The general

solution is
d
pL00=2 Acl] sintkix), (48)
wheren=(n4, ... ,ng) is the set of quantum numbers pa-

rametrizing the eigenmodes of the discrete Laplace operator,

sn=2[2id:1cos(ki)—d] is the corresponding eigenvalue
with kj=n;#/(L+1),

d
— Cn
B 2d71(1)|_ i=1 i
" aEg(L+1)? Sn ]
and
( ni’ITL
L SN
2(L+1)
Ch=2 sin(ki-x)=(—1)M ———"1
0= 2, sinki)=(-1) N
SN2+

wheren;=2m;+ 1. Surprisingly, this already gives quite a

good approximation fop, , which becomes better and better

asL increasegsee Figs. 3 and)4

Away from the boundaries, one expects rotational invari-
ance forp, (X). This can be checked by expanding the func-

tion sin near tax;=L/2, i=1, ... d up to third order. One
obtains the well known paraboloid forf26] p, (x)~Kj
—K,=% ,x?, where the constanté, and K, can be easily
deduced from Eq(47).

One also obtains the average density of active Sigs,
= (LY=L p (i),

which is expected to hold for sufficiently larde In Fig. 4
we show a plot in which it clearly appears that this formula
gives already a quite good estimate for 15.

IV. SCALING PROPERTIES OF THE LYAPUNOV
SPECTRUM

Zhang's model, as a hyperbolic dynamical system, cannot
exhibit a critical behavior for finite size, since it has an ex-
ponential correlation decayHowever, since a critical be-
havior is conjectured in the thermodynamic limit, one ex-
pects that hyperbolicity is lost ds— o, namely, some of the
Lyapunov exponents go to zero. It is therefore of crucial
importance to know the behavior of the Lyapunov exponents
asL— . In this section, we first discuss the time scale sepa-
ration between the activation rate and the dissipation rate,
which is believed to be a fundamental ingredient to have
SOC, and its links to the Lyapunov exponents. We then
show that using a finite size scaling ansatz provides a scaling
exponent from which the scaling of some SOC observables
can be obtained.

A. Time scale separation

Equation(49) can be written as
2d—1;L

LdaEtot

pEU YL (50)

9The exponential correlation decay is a general property of hyper-
bolic systems, but in the presence of singularities one can also
observe a polynomial correlation decay and a weak initial condition
senstivity[9].
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where Q_+1)dyL=En(Hid:lCﬁi/sn). Let us estimate the
scaling of this sum at —~. First, setd=1 and fixa>0
arbitrarily small. The sum oven=n; can be split into one
part such than<(L+ 1)« and another part where= (L
+1)a. In the first sum, C,~2(L+1)/n7w and s,~
—(mn)?/(L+1)2, while the second sum is smaller than (
+1)C(a), whereC(«) is bounded fora>0. Thereforey,
~(L+1)S, where S~=,_( 41),(1/n*) remains bounded
asL—o. Theny ~(L+1)°. This argument can be gener-
alized for any d by splitting the sum overn
=(Nn¢,N,, ... ,Ng) into sums wherek indexes are smaller
thata(L+1), k going from 0O tod. It is easy to see that the
main contribution is due to the terms such tdandexes are
<a(L+1), giving a leading contributio® (L +1)?4*2 and
v ~L9"2, We therefore conclude thaf’ scales like

o (L+1)%2 o l? ol?

Ld Etot B LIX,

av
L~
Etot

(51)

We seth=w, /LY for the driving rate, and assume that
=h/pf’=x,L 2. One obtains the energy conservation equa
tion h=p{e, and thereforee is the energy dissipated per
active site and per unit time. This corresponds to dsssi-
pation rate introduced by Vespignanet al. [15]. Since 0
<x <Eg, VL, x_ plays no role in the asymptotic scalings in
L, and therefore~L "2, as already anticipated by a mean-
field approach in Ref.15].

The average value of observables like size, duration, etc.

is known to diverge with a power law scaling), ~L .

Therefore_](/r)LHO like L™ asL—o wherey,.>1 [3].

Since O<w, <1 [see EQ.(20)], Eq. (21) implies thatp,

=f(U 7)) =(ar /() — (a2 /(1)) +O(1A7)}). This is
particularly clear forE.<1, sincepL=ZL, which implies
pL=1/(1+(7)), and thereforea;=1a,=1. For general
E., using this form gives, from Eq21), a;=1,

1 a
PL~ T R (52
and
— a2
LT (53
asL—oo. It follows, therefore, that
ppt~L -2 (54)
We have therefore shown that
h—0, e—0, pf”=2—>0 as L—o (55)

In Ref.[15] Vespignaniet al. discussed the necessity of this
triple limit in order to have SOC. However, in their analysis
the activation and dissipation rate were free paraméters
able “by hand”). In Zhang's modelh and e are not free,

PHYSICAL REVIEW E 64 016133

since they are fully determined by the dynamics. Therefore,
we have shown that the three limits discussed by Vespignani
et al. [15] are indeed achieved, without external fine tuning
of some parameter, in Zhang’'s model, by the simple con-
straints one imposes on the dynamiasliabatic driving.

From Eg.(53) we have that the positive Lyapunov expo-
nent (the entropy w, log(N)—0 in the thermodynamic
limit. On the other hand, the first negative Lyapunov expo-
nent is given with a good accuracy by the normal diffusion
operator H2pA (see Fig. 2, which implies that\ (1)
~p2’L~2, Another way of arguing is to note that from theo-
rem 1,\ (1) scales like the average ratio of energy dissi-
pated by one site. From the local conservation of energy,
AL(1)x ~h; then\ (1)~ pfL 2. Therefore\ (1)—0 in
the thermodynamic limit. Actually, the finite-size scaling
analysis of Sec. IV B suggests that a large number of nega-
tive Lyapunov exponents also go to zerolas>«. But the
double limith (0)—O0\ (1)—0 already shows that tHey-
perbolicity is lost in the thermodynamic limiNote, how-
ever, that these two exponents are not independent, since

local conservation of energy imposk§(1)YL~h which im-

plies\ (1)/x(0)~L " %log(N). Incidentally, this validates
the separation of time scale between the correlation decay
time 1A (0) and the largest transport characteristic time
1/\ (1) we used in Sec. lll when deriving the mean-field
transport equation for the slowest modes.

B. Finite size scaling of the Lyapunov spectrum

An approximate expression for modes related to transport
in the lattice is obtained from the operatdr [Eq. (40)],
whereas an approximate equation foris given by Eq.(49).
However, at the moment we do not have an analytical ex-
pression for the modes d@. In this sequel, we restrict to the
scaling of the slowest singular values 6fwith the system
size.

When dealing with a scaling analysis in the thermody-
namic limit, one usually first tries to use finite size scaling
(FSS. This is a standard tool in statistical mechanics. It has
also been proposed in SOC as an ansatz for the scaling of the
probability distribution of avalanches observablés How-
ever, its validity was recently questioned in this cf8k

Nevertheless, since this is certainly the first ansatz one
can use to try to do a scaling analysis, in this section we
attempt a finite-size scaling ansatz for the Lyapunov spec-
trum, and look at the results and conclusions we are 1€ to.
We assume, therefore, that, for ahythere exists a change
of coordinates — ¢, (i),\.— (N ), depending ort, such
that the points of the spectrufin A (i)} are mapped onto the
same “universal” curvé® {x,\(x)}, where \(x)= o\,
oqs[l(x). Furthermore we assuntas in usual finite size scal-
ing) that the coordinate changes are simple dilata-

10\ote that the FSS of the Lyapunov spectrum is not a general
property of dynamical systems, even close to a phase transition
point[27,28.

HNote that this curve depends on the paramefarse, andd.
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TABLE I. Computed values ofr, vs E., obtained from Eq.
(59), for samples of sizé =10-20.

E. T\

0.6 0.632
1.1 0.622
1.5 0.621
2.2 0.560
4.1 0.524

tions whereg, (x) =LAr-x, ¢ (x)=LPr7\(x). Then

-3.5 |

M(X) =LA (XL~ AY). (56)

Equivalently, knowing the curvéx,\(x)}, the spectrum for o e e e e e e
a given size is FIG. 5. Data collapse of the Lyapunov spectrum Ey=2.2,
€=0.1, andL=12, 14, 16, and 18.
A(D)=L"ADN\GL A, i=1,...L% (57)

) o R ) 7.,'2 and therefore our discussion suggests that there is a

Since the set of indiceis= {1, ... L it is evident that link betweenr, and the critical exponents; and 7.
8, —d 58) FSS leads to,, (1)=L "9\ (LY. However the analy-
N ticity properties ofA near zero are not known. Assume that

The exponentr, can be numerically computed by several M(X)~x* andx~0, wherea may C{%ge_ndg orl (seemingly
means. The first is to minimize the Euclidean distance be-“:e-;L tozr d=2). Then A (1)~L """"% From A, (1)
tween the spectra obtained for different lattice sizes, with~PL L one obtains
respect tor, . Another way is to compute the sum of the av_y —dr,+2-da
Lyapunov exponents. Indeed pL L ' (60)

def N 1 and, from Eq.(54), y,+d=d(7,+ «). Finally, from Egs.

SL: 2 )\L(i):Lde)\ 2 )\(y)NLd(lfr)\)J'l )\(y)dy (31), (52), and(59), one obtains:
=1 y=Ld Ld

dn=d—vystvy,, (62)
Assuming that\ (y) is bounded ay—0, and that 8<K ) )

= [\(y)dy<oe, one obtains which gives

S ~K-Ld(E=m), (59 Ys=2, (62)
which allows one to compute, . The value ofr, for d=2, y.=dn+2-d, (63)
and e=0.1 and differentE. values are given in Table I.
These values were obtained for a sample of spectra from @n
=10 to 20. We note, in particular, thag depends of.. At >
the moment we have no way of knowing whether this effect a=—. (64)
persists in the thermodynamic limit. Note that these values d

are given as indications, but that a correct estimationr,of . -
certainly requires further investigations for consequentIyThe equation fory; was already anticipated by many authors

larger system sizes. These numerical studies are beyond offf the basis of numerical simulation25], and the mean-
present computer performances. field approacl"_[15] and was provec_i in Dhgrs model_ _fm#
The data collapse of spectra is drawn in Fig. 5. Though & 2 by Dhar himself29]. The equation forr is well verified

good data collapse is not sufficient to ensure FSS, Fig. gtd=1 and 2. However, this relation deserves further inves-

indicates that this gives a good approximation of the Spec'gigation in larger dimensions. It suggests, in particular, that

trum. Actually, we do not expect FSS to hold for the whole the curvex(x) is not C* at zero ford>2, i.e., the largest
spectrum(in particular the kernel modes could have different€xPonents do not go to zero in a smooth wayLas=.
scalings. For the following discussion, however, it is suffi-  Finally, the anomalous diffusion exponentcharacteriz-
cient to assume that FSS holds for the slowest modes. This {89 the average transport within one avalanche, is equg} to
a reasonable assumption, since these modes are well approxi-
mated by normal diffusion.

We now relate the exponenfg, andy, (and other char-  2ynder the finite size scaling assumptionRyf(x), one finds that
acteristic exponents like, the anomalous diffusion expo- y,=p,(2— 7,), whereL?x is the scaling for the maximal value ®f
nents to 7, . Note thaty, is related to the critical exponent in a lattice of sizel.
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if one assumes that the average avalanche radius scalés likeot normal, because the density of the active sites is not
in any dimension3]. Equivalently, one can note that the spatially homogeneous. The slow Oseledec modes corre-
crossover point for they, (i) spectrum[Eqg. (32)] is  spond, rather, to diffusion in a metric which is not flat and is
~L?%(7), and does not depend dn From Eg.(63) it fol- given by the density of active sites. Only for the slowest
lows that the transport on time scales of orfiey, is anoma- mode are the Lyapunov exponents the same as for the largest
lous (z<2) if 7,<1. Note, however, that this argument as- rate in normal diffusion. This is important, since the slowest
sumes that FSS is still valid at the crossover point. Thignode characterizes the equilibrium properties of the model.
result suggests therefore that some of the critical exponenfBhis means that the usual mean-field approaches, which re-
of SOC can be obtained from a simple scaling ansatz on thplace the density of active sites by its lattice average, are
Lyapunov spectrum. correct if one considers properties related to the longest time
As a final remark, note that tHg, dependence appearing scales. Since the critical exponengs and vy, characterize
in Table 1 would have to be clarified, since it suggests thastatistical properties on the largest time scale, they are natu-
the critical exponents depend df.. This was already ar- rally related to the slowest Lyapunov exponent.
gued in Refs[9-11], and suggested from numerical simula- We investigated the scaling properties of the spectrum
tions (though not discusse¢dh Ref.[30]. Note, however, that  with respect to the lattice size and found that finite size scal-
the dependence of dynamical quantities in the control paraming gives a good approximation. In particular we extracted a
eter in a dynamical system is more a rule than an exceptiortritical exponentr, which is related to the usual critical
One certainly needs very special properties to ensure that tlexponents computed in the literature. However, there is
critical exponents are constant in the linit-, whatever clearly a lot more information in the Lyapunov spectra than
the value ofE,. If this happened to be true, it would mean in the usual critical exponents.
that Zhang’s model is somehow nongeneric, at least from a The scaling form also shows that in the thermodynamic

dynamical system point of view. limit a part of the spectrum goes to zero, corresponding to
translation invariance and zero dissipation. In this way
V. CONCLUSION Zhang’'s model is not hyperbolic in the thermodynamic limit.

This limit now has to be studied in more detail, especially as

In this paper, we investigated the dynamics of Zhang'sfar as the vanishing of correlations is concerned. It may in-
model in terms of the Lyapunov exponents and Oseledegeed be a way to make a connection between SOC and the
modes. Due to the piecewise affine structure of the modelysual critical phenomena.
the Lyapunov exponents, usually related to the local proper-
ties of the dynamicqexpansion ra_lte.s, fractal dimensions, ACKNOWLEDGMENTS
entropy, also appear as characteristic rates of energy trans-
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